ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Publication Date: 2008-09-01
    Print ISSN: 0143-1161
    Electronic ISSN: 1366-5901
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Taylor & Francis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-11-12
    Description: Scintillometry is widely recognized as a potential tool for obtaining spatially aggregated sensible heat fluxes at regional scales. Although many investigations have been made over contrasting component surfaces, few aggregation schemes consider footprint contributions. In this paper, an approach is presented to infer average sensible heat flux over a very heterogeneous landscape by using a large aperture scintillometer. The methodology is demonstrated on simulated data and tested on a time series of measurements obtained during the SPARC2004 experiment in Barrax, Spain. Results show that the two-dimensional footprint approach yields more accurate results of aggregated sensible heat flux than traditional methods.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2009-06-18
    Description: EAGLE2006 – an intensive field campaign for the advances in land surface hydrometeorological processes – was carried out in the Netherlands from 8th to 18th June 2006, involving 16 institutions with in total 67 people from 16 different countries. In addition to the acquisition of multi-angle and multi-sensor satellite data, several airborne instruments – an optical imaging sensor, an imaging microwave radiometer, and a flux airplane – were deployed and extensive ground measurements were conducted over one grassland site at Cabauw and two forest sites at Loobos and Speulderbos in the central part of the Netherlands. The generated data set is both unique and urgently needed for the development and validation of models and inversion algorithms for quantitative land surface parameter estimation and land surface hydrometeorological process studies. EAGLE2006 was led by the Department of Water Resources of the International Institute for Geo-Information Science and Earth Observation (ITC) and originated from the combination of a number of initiatives supported by different funding agencies. The objectives of the EAGLE2006 campaign were closely related to the objectives of other European Space Agency (ESA) campaign activities (SPARC2004, SEN2FLEX2005 and especially AGRISAR2006). However, one important objective of the EAGLE2006 campaign is to build up a data base for the investigation and validation of the retrieval of bio-geophysical parameters, obtained at different radar frequencies (X-, C- and L-Band) and at hyperspectral optical and thermal bands acquired simultaneously over contrasting vegetated fields (forest and grassland). As such, all activities were related to algorithm development for future satellite missions such as the Sentinels and for validation of retrievals of land surface parameters with optical and thermal and microwave sensors onboard current and future satellite missions. This contribution describes the campaign objectives and provides an overview of the airborne and field campaign dataset. This dataset is available for scientific investigations and can be accessed on the ESA Principal Investigator Portal http://eopi.esa.int/.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2009-05-27
    Description: The increasing scarcity of water from local to global scales requires the efficient monitoring of this valuable resource, especially in the context of a sustainable management in irrigated agriculture. In this study, a two-source energy balance model (TSEB) was applied to the Barrax test site. The inputs of leaf area index (LAI) and fractional vegetation cover (fCover) were estimated from CHRIS imagery by using the traditional scaled NDVI and a look-up table (LUT) inversion approach. The LUT was constructed by using the well established SAILH + PROSPECT radiative transfer model. Simulated fluxes were compared with tower measurements and vegetation characteristics were evaluated with in situ LAI and fCover measurements of a range of crops from the SPARC campaign 2004. Results showed a better retrieval performance for the LUT approach for canopy parameters, affecting flux predictions that were related to land use.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2009-03-06
    Description: The increasing scarcity of water from local to global scales requires the efficient monitoring of this valuable resource, especially in the context of a sustainable management in irrigated agriculture. In this study, a two-source energy balance model (TSEB) was applied to the Barrax test site. The inputs of Leaf area index (LAI) and fractional vegetation cover (fCover), were estimated from CHRIS imagery by using the traditional scaled NDVI and a LUT inversion approach. The LUT was constructed using the well established SAILH+PROSPECT radiative transfer model. Simulated fluxes were compared with tower measurements and vegetation characteristics were evaluated with in situ LAI and fCover measurements of a range of crops from the SPARC campaign 2004. Results showed a better retrieval performance for the LUT approach for canopy parameters, affecting flux predictions that were related to land use.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2009-03-09
    Description: Scintillometry is widely recognized as a potential tool for obtaining spatially aggregated sensible heat fluxes. Although many investigations have been made over contrasting component surfaces, few aggregation schemes consider footprint contributions. In this paper an approach is presented to infer average sensible heat flux over a very heterogeneous landscape by using a large aperture scintillometer. The methodology is demonstrated on simulated data and tested on a time series of measurements obtained during the SPARC2004 experiment in Barrax, Spain. Results show that the two-dimensional footprint approach yields more accurate results of aggregated sensible heat flux than traditional methods.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2009-03-06
    Description: EAGLE2006 – an intensive field campaign for the advances in land surface hydrometeorological processes – was carried out in the Netherlands from 8 to 18 June 2006, involving 16 institutions with in total 67 people from 16 different countries. In addition to the acquisition of multi-angle and multi-sensor satellite data, several airborne instruments – an optical imaging sensor, an imaging microwave radiometer, and a flux airplane – were deployed and extensive ground measurements were conducted over one grassland site at Cabauw and two forest sites at Loobos and Speulderbos in the central part of the Netherlands. The generated data set is both unique and urgently needed for the development and validation of models and inversion algorithms for quantitative land surface parameter estimation and land surface hydrometeorological process studies. EAGLE2006 was led by the Department of Water Resources of the International Institute for Geo-Information Science and Earth Observation (ITC) and originated from the combination of a number of initiatives supported by different funding agencies. The objectives of the EAGLE2006 campaign were closely related to the objectives of other European Space Agency (ESA) campaign activities (SPARC2004, SEN2FLEX2005 and especially AGRISAR2006). However, one important objective of the EAGLE 2006 campaign is to build up a data base for the investigation and validation of the retrieval of bio-geophysical parameters, obtained at different radar frequencies (X-, C- and L-Band) and at hyperspectral optical and thermal bands acquired simultaneously over contrasting vegetated fields (forest and grassland). As such, all activities were related to algorithm development for future satellite missions such as the Sentinels and for validation of retrievals of land surface parameters with optical and thermal and microwave sensors onboard current and future satellite missions. This contribution describes the campaign objectives and provides an overview of the airborne and field campaign dataset. This dataset is available for scientific investigations and can be accessed on the ESA Principal Investigator Portal http://eopi.esa.int.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: Improving water management can make a significant contribution to achieving most of the Millennium Development Goals established by the UN General Assembly in 2000, especially those related to poverty, hunger, and major diseases. The World Summit on Sustainable Development (WSSD) in 2002 recognized this need. Water and sanitation in particular received great attention from the Summit. The Johannesburg Plan of Implementation recommended to improve water resources management and scientific understanding of the water cycle through joint cooperation and research. For this purpose, it is recommended to promote knowledge sharing, provide capacity building, and facilitate the transfer of technology including remote-sensing (RS) and satellite technologies, especially to developing countries and countries with economies in transition, and to support these countries in their efforts to monitor and assess the quantity and quality of water resources, for example, by establishing and/or further developing national monitoring networks and water resources databases and by developing relevant national indicators. The Johannesburg Plan also adopted integrated water resources management as the overarching concept in addressing and solving water-related issues. As a result of the commitments made in the Johannesburg Plan of Implementation, several global and regional initiatives have emerged. Current international initiatives such as the Global Monitoring for Environment and Security (GMES) program of the European Commission and the European Space Agency (ESA), and the Global Earth Observation System of Systems (GEOSS) 10-Year Implementation Plan, have all identified Earth observation (EO) of the water cycle as the key in helping to solve the world s water problems. The availability of spatial information on water quantity and quality will also enable closure of the water budget at river basin and continental scales to the point where effective water management is essential (e.g., as requested by the European Union s Water Framework Directive (WFD), as well as national policies). Geo-information science and EO are vital in achieving a better understanding of the water cycle and better monitoring, analysis, prediction, and management of the world s water resources. The major components of the water cycle of the Earth system and their possible observations are presented. Such observations are essential to understand the global water cycle and its variability, both spatially and temporally, and can only be achieved consistently by means of EOs. Additionally, such observations are essential to advance our understanding of coupling between the terrestrial, atmospheric, and oceanic branches of the water cycle, and how this coupling may influence climate variability and predictability. Water resources management directly interferes with the natural water cycle in the forms of building dams, reservoirs, water transfer systems, and irrigation systems that divert and redistribute part of the water storages and fluxes on land. The water cycle is mainly driven and coupled to the energy cycle in terms of phase changes of water (changes among liquid, water vapor, and solid phases) and transport of water by winds in addition to gravity and diffusion processes. The water-cycle components can be observed with in situ sensors as well as airborne and satellite sensors in terms of radiative quantities. Processing and conversion of these radiative signals are necessary to retrieve the water-cycle components.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC.BOOK.5769.2011 , Treatise on Water Science; 351-399
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...