ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    Journal of Biomedical Materials Research 22 (1988), S. 287-302 
    ISSN: 0021-9304
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: Porous coated Ti-6Al-4V alloy implant systems provide a biocompatible interface between implant and bone, resulting in firm fixation and potential long-term retention via bony ingrowth. In order to achieve an acceptable porous coating structure, the sintering protocol for Ti-6Al-4V alloy systems often requires that the material be heat treated above the beta transus. This transforms the as-received equiaxed microstructure, recommended for surgical implants, to a lamellar alpha-beta distribution, which has been shown to have the worst fatigue properties of the most common structures attainable in Ti-6Al-4V alloy. However, post-sintering heat treatments may be used to improve these properties by producing microstructures more resistant to crack initiation and propagation. This study investigated the influence of microstructural variations on the fatigue properties of porous coated Ti-6Al-4V alloy material. Nonporous coated and porous coated Ti-6Al-4V alloy fatigue specimens were subjected to a standard sintering heat treatment to produce a lamellar microstructure. In addition, two post-sintering heat treatments were used to produce coarse and fine acicular microstructures. Rotating beam (reversed bending) fatigue testing was performed and the endurance limits determined for the noncoated and porous coated microstructures. The values determined were 668 MPa (noncoated asreceived equiaxed), 394 MPa (noncoated lamellar), 488 MPa (non-coated coarse acicular), 494 MPa (noncoated fine acicular), 140 MPa (porous coated lamellar), 161 MPa (porous coated coarse acicular), and 162 MPa (porous coated fine acicular). The noncoated coarse and fine acicular specimens displayed an approximate 25% increase over the noncoated lamellar specimens. The porous coated coarse and fine acicular specimens showed an approximate 15% improvement over the porous coated lamellar specimens.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...