ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Publication Date: 2019-07-19
    Description: This status report corresponds to two studies tied to an animal experiment being executed at the University of California Davis (Charles Fuller's laboratory). The animal protocol uses the well-documented rat hindlimb suspension (HLS) model, to examine the relationship between cephalic fluid shifts and the regulation of intracranial (ICP) and intraocular (IOP) pressures as well as visual system structure and function. Long Evans rats are subjected to HLS durations of 7, 14, 28 and 90 days. Subgroups of the 90-day animals are studied for recovery periods of 7, 14, 28 or 90 days. All HLS subjects have age-matched cage controls. Various animal cohorts are planned for this study: young males, young females and old males. In addition to the live measures (ICP by telemetry, IOP and retinal parameters by optical coherence tomography) which are shared with the Fuller study, the specific outcomes for this study include: -Gene expression analysis of the retina -Histologic analysis - Analysis of the microvasculature of retina flat mounts by NASA's VESsel GENeration Analysis (VESGEN) Software. To date, the young male and female cohorts are being completed. Due to the need to keep technical variation to a minimum, the histologic and genomic analyses have been delayed until all samples from each cohort are available and can be processed in a single batch per cohort. The samples received so far correspond to young males sacrificed at 7,14, 28 and 90 days of HLS and at 90 days of recovery; and from young females sacrificed at 7, 14 and 28 of HLS. A complementary study titled: "A gene expression and histologic approach to the study of cerebrospinal fluid (CSF) production and outflow in hindlimb suspended rats" seeks to study the molecular components of CSF production and outflow modulation as a result of HLS, bringing a molecular and histologic approach to investigate genome wide expression changes in the arachnoid villi and choroid plexus of HLS rats compared to rats in normal posture.
    Keywords: Life Sciences (General)
    Type: JSC-CN-34661 , 2016 NASA Human Research Program Investigators'' Workshop (HRP IWS 2016); Feb 08, 2016 - Feb 11, 2016; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-19
    Description: Lunar dust is capable of entering habitats and vehicle compartments by sticking to spacesuits or other objects that are transferred into the spacecraft from the lunar surface and has been reported to cause irritation upon exposure. During the Apollo missions, crewmembers reported irritation specifically to the skin and eyes after contamination of the lunar and service modules. It has since been hypothesized that ocular irritation and abrasion might occur as a result of such exposure, impairing crew vision. Recent work has shown that both ultrafine and unground lunar dust exhibited minimal irritancy of the ocular surface (i.e., cornea); however, the assessment of the severity of ocular damage resulting from contact of lunar dust particles to the cornea has focused only on macroscopic signs of mechanical irritancy and cytotoxicity. Given the chemical reactive properties of lunar dust, exposure of the cornea may contribute to detrimental effects at the molecular level including but not limited to oxidative damage. Additionally, low level chronic exposures may confound any results obtained in previous acute studies. We report here preliminary results from a tissue sharing effort using 10weekold Fischer 344 male rats chronically exposed to filtered air or jet milled lunar dust collected during Apollo 14 using a JaegerNYU noseonly chamber for a total of 120 hours (6 hours daily, 5 days a week) over a 4week period. RNA was isolated from corneas collected from rats at 1 day and 7 days after being exposed to concentrations of 0, 20, and 60 mg/m3 of lunar dust. Microarray analysis was performed using the Affymetrix GeneChip Rat Genome 230 2.0 Array with Affymetrix Expression Console and Transcriptome Analysis Console used for normalization and secondary analysis. An Ingenuity iReport"TM" was then generated for canonical pathway identification. The number of differentially expressed genes identified increases with dose compared to controls suggesting a more severe response to the lunar dust insult at higher levels. Pathways of interests that have been identified in all exposed samples include oxidative stress response, mitochondrial dysfunction, fibrosis, epithelial healing, TGF-Beta signaling, and extracellular matrix remodeling. Several biological processes related to cell migration, cellular proliferation, and eye development were also identified to be altered by exposure to lunar dust. Our preliminary results suggest that even a chronic insult of lunar dust as low as 20 mg/m(exp 3) elicits a molecular response in cornea tissue. Lunar dust on the surface of the moon would have the added properties of ionization and activation potentially leading to further damage to the cornea and greater sensitivity to any other environmental insult such as exposure to radiation. Additional studies are required to fully assess the risk of vision impairment and the mechanistic responses initiated in cornea exposed to lunar dust as well as the potential for longterm effects to astronaut health
    Keywords: Aerospace Medicine
    Type: JSC-CN-30050 , 2014 NASA Human Research Program Investigators'' Workshop (HRP 2014); Feb 12, 2014 - Feb 13, 2014; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...