ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1365-2427
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: 1. Populus tremuloides leaf litter was produced under elevated (ELEV = 720 ppm) and ambient (AMB = 360 ppm) atmospheric CO2 conditions. Leaf chemical quality was significantly altered by CO2 enrichment. ELEV leaves had significantly higher concentrations of phenolic compounds and lignins, and higher C : N ratios than AMB.2. Leaf litter was incubated in a headwater stream for 14 days to become colonised by microorganisms; aquatic bacterial productivity was significantly lower on ELEV than on AMB leaf litter. Colonised leaves were fed to four species of detritivorous mosquito larvae to assess their survivorship and development rates.3. Larval mortality was 2.2 times higher for Aedes albopictus fed ELEV litter when compared with AMB. Although mortality of A. triseriatus, A. aegypti and Armigeres subalbatus was not affected by treatment, larval development rate was delayed by 78, 25 and 27%, respectively, when fed ELEV litter.4. Increased mosquito mortality and/or delayed larval development rates are more likely to have negative implications for food web structure and productivity in ecosystems where immature stages of mosquitoes are an important food source of predators.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: Up to 99% of the carbon fuelling the food webs of temperate woodland streams is derived from inputs of terrestrial leaf litter. Aquatic bacteria, fungi, and detritivore invertebrates directly utilize these inputs, transferring this energy to other components of the food web. Increases in atmospheric CO2 could indirectly impact woodland stream food webs by chemically altering leaf litter. This study evaluated CO2-induced chemical changes in aspen (Populus tremuloides) leaf litter, and the corresponding effects on stream bacteria, fungi and leaf-shredding cranefly larvae (Tipula abdominalis: Diptera). Leaf litter from plants grown under elevated CO2 had decreased nutritional value to aquatic decomposers and detritivores because of higher levels of structural compounds and lower nitrogen content. Consequently, elevated CO2-grown leaf litter supported 59% lower bacterial production in a stream than litter grown at ambient CO2 levels, while not affecting fungal biomass. Larval craneflies fed elevated CO2-grown microbially colonized leaves consumed less, assimilated less, and grew 12 times slower than their ambient fed counterparts.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1939
    Keywords: Key words Atmospheric CO2 ; Roots ; Arbuscular mycorrhizas ; Microbial biomass ; Microarthropods
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We tested the hypotheses that increased belowground allocation of carbon by hybrid poplar saplings grown under elevated atmospheric CO2 would increase mass or turnover of soil biota in bulk but not in rhizosphere soil. Hybrid poplar saplings (Populus×euramericana cv. Eugenei) were grown for 5 months in open-bottom root boxes at the University of Michigan Biological Station in northern, lower Michigan. The experimental design was a randomized-block design with factorial combinations of high or low soil N and ambient (34 Pa) or elevated (69 Pa) CO2 in five blocks. Rhizosphere microbial biomass carbon was 1.7 times greater in high-than in low-N soil, and did not respond to elevated CO2. The density of protozoa did not respond to soil N but increased marginally (P 〈 0.06) under elevated CO2. Only in high-N soil did arbuscular mycorrhizal fungi and microarthropods respond to CO2. In high-N soil, arbuscular mycorrhizal root mass was twice as great, and extramatrical hyphae were 11% longer in elevated than in ambient CO2 treatments. Microarthropod density and activity were determined in situ using minirhizotrons. Microarthropod density did not change in response to elevated CO2, but in high-N soil, microarthropods were more strongly associated with fine roots under elevated than ambient treatments. Overall, in contrast to the hypotheses, the strongest response to elevated atmospheric CO2 was in the rhizosphere where (1) unchanged microbial biomass and greater numbers of protozoa (P 〈 0.06) suggested faster bacterial turnover, (2) arbuscular mycorrhizal root length increased, and (3) the number of microarthropods observed on fine roots rose.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-1939
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Three populations of the grass Danthonia spicata were observed to have different rates of biomass accumulation when grown in common environment treatments. The populations were native to adjacent sites of different successional age and different levels of shading. Twelve individuals from each population were clonally replicated and two replicates were grown in each of two light treatments, 100% and 22% of unshaded sunlight. Following growth in the treatments the populations all exhibited the same mean light-saturated photosynthetic rate of 11.7 μmol m-2s-1. This rate is intermediate for published values of sun and shade species and for species from along a successional gradient. There was no difference in photosynthetic rate among treatments. There was significant genetic variation for lightsaturated photosynthetic rate within populations but no significant differences among populations. The populations had similar leaf water potential values of-1.12 MPa in all treatments. There were significant differences among treatments and genotypes for specific leaf weight which resulted in significant differences among treatments and no significant differences among genotypes in light-saturated photosynthetic rate expressed on a leaf weight basis. Lightsaturated photosynthetic rate had a high heritability and low plasticity. We postulate that photosynthetic rate is under strong selection and that the observed rates permit populations of D. spicata to grow in a wide range of habitat light levels.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-1939
    Keywords: CAM/C3 metabolism ; Water relations ; Survivorship ; Sedum wrightii ; Crassulaceae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Sedum wrightii is one of only a few species in the Crassulaceae for which there is evidence for a high degree of variability in the ratio of daytime to nighttime CO2 assimilation. There are both environmental and genetic components to this variability. S. wrightii grows over a wide altitudinal gradient. The purpose of this study was to compare low, intermediate, and high altitude populations with respect to the degree of CAM expression and the capability to tolerate limited water availability. We utilized clonallyreplicated genotypes of plants from each population in common environment greenhouse experiments. Genetic differences among the populations were found in long-term water use efficiency, in 24 hour CO2 exchange patterns, in biomass δ13C values, in carbon allocation, and in water status and ultimately survival during prolonged drought. The differences among the populations appear to be closely related to differences in the native habitats. The low altitude, desert plants had the greatest ability to grow and survive under conditions of limited water availability and appear to have the greatest shift to nighttime CO2 uptake during periods without water, while the high altitude plants had the poorest performance under these conditions and appear to shut down net carbon uptake when severely water limited.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-5036
    Keywords: atmospheric CO2 ; belowground production ; labile soil C ; microbial biomass ; N mineralization ; photosynthesis ; positive feedback
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract We tested a conceptual model describing the influence of elevated atmospheric CO2 on plant production, soil microorganisms, and the cycling of C and N in the plant-soil system. Our model is based on the observation that in nutrient-poor soils, plants (C3) grown in an elevated CO2 atmosphere often increase production and allocation to belowground structures. We predicted that greater belowground C inputs at elevated CO2 should elicit an increase in soil microbial biomass and increased rates of organic matter turnover and nitrogen availability. We measured photosynthesis, biomass production, and C allocation of Populus grandidentata Michx. grown in nutrient-poor soil for one field season at ambient and twice-ambient (i.e., elevated) atmospheric CO2 concentrations. Plants were grown in a sandy subsurface soil i) at ambient CO2 with no open top chamber, ii) at ambient CO2 in an open top chamber, and iii) at twice-ambient CO2 in an open top chamber. Plants were fertilized with 4.5 g N m−2 over a 47 d period midway through the growing season. Following 152 d of growth, we quantified microbial biomass and the availabilities of C and N in rhizosphere and bulk soil. We tested for a significant CO2 effect on plant growth and soil C and N dynamics by comparing the means of the chambered ambient and chambered elevated CO2 treatments. Rates of photosynthesis in plants grown at elevated CO2 were significantly greater than those measured under ambient conditions. The number of roots, root length, and root length increment were also substantially greater at elevated CO2. Total and belowground biomass were significantly greater at elevated CO2. Under N-limited conditions, plants allocated 50–70% of their biomass to roots. Labile C in the rhizosphere of elevated-grown plants was significantly greater than that measured in the ambient treatments; there were no significant differences between labile C pools in the bulk soil of ambient and elevated-grown plants. Microbial biomass C was significantly greater in the rhizosphere and bulk soil of plants grown at elevated CO2 compared to that in the ambient treatment. Moreover, a short-term laboratory assay of N mineralization indicated that N availability was significantly greater in the bulk soil of the elevated-grown plants. Our results suggest that elevated atmospheric CO2 concentrations can have a positive feedback effect on soil C and N dynamics producing greater N availability. Experiments conducted for longer periods of time will be necessary to test the potential for negative feedback due to altered leaf litter chemistry. ei]{gnH}{fnLambers} ei]{gnA C}{fnBorstlap}
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1573-5036
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1573-5036
    Keywords: CO2 ; gas exchange ; nitrogen ; Populus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Soil N availability may play an important role in regulating the long-term responses of plants to rising atmospheric CO2 partial pressure. To further examine the linkage between above- and belowground C and N cycles at elevated CO2, we grew clonally propagated cuttings of Populus grandidentata in the field at ambient and twice ambient CO2 in open bottom root boxes filled with organic matter poor native soil. Nitrogen was added to all root boxes at a rate equivalent to net N mineralization in local dry oak forests. Nitrogen added during August was enriched with 15N to trace the flux of N within the plant-soil system. Above-and belowground growth, CO2 assimilation, and leaf N content were measured non-destructively over 142 d. After final destructive harvest, roots, stems, and leaves were analyzed for total N and 15N. There was no CO2 treatment effect on leaf area, root length, or net assimilation prior to the completion of N addition. Following the N addition, leaf N content increased in both CO2 treatments, but net assimilation showed a sustained increase only in elevated CO2 grown plants. Root relative extension rate was greater at elevated CO2, both before and after the N addition. Although final root biomass was greater at elevated CO2, there was no CO2 effect on plant N uptake or allocation. While low soil N availability severely inhibited CO2 responses, high CO2 grown plants were more responsive to N. This differential behavior must be considered in light of the temporal and spatial heterogeneity of soil resources, particularly N which often limits plant growth in temperate forests.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1992-09-01
    Description: Rising atmospheric carbon dioxide concentrations may have important consequences for forest ecosystems. We studied above- and below-ground growth and leaf gas exchange responses of Populusgrandidentata Michx. to elevated CO2 under natural forest conditions over the course of a growing season. Recently emerged P. grandidentata seedlings were grown in native, nutrient-poor soils at ambient and twice ambient (707 μbar (1 bar = 100 kPa)) CO2 partial pressure for 70 days in open-top chambers in northern lower Michigan. Total leaf area and shoot and root dry weight all increased in high CO2 grown plants. Photosynthetic light and CO2 response characteristics were measured 28, 45, and 68 days after exposure to elevated CO2. In ambient grown plants, light saturated assimilation rates increased from day 28 to day 45 and then declined at day 68 (15 September). This late-season decline, typical of senescing Populus leaves, was due both to a decrease in the initial slope of the net CO2 assimilation versus intercellular CO2 partial pressure relationship and to decreased CO2 saturated assimilation rates. Specific leaf nitrogen (mg N•(cm2 leaf area)−1) did not change during this period, although leaf carbon content and leaf weight (mg•cm−2) both increased. In ambient grown plants stomatal conductance also declined at day 68. In contrast, plants grown at elevated CO2 showed no late-season decline in photosynthetic capacity or changes in leaf weight, suggesting a delay in senescence with long-term exposure to high CO2. High CO2 grown plants also maintained photosynthetic sensitivity to increasing Ci throughout the exposure period, while ambient CO2 grown plants were insensitive to Ci above 400 μbar on day 68. These results indicate the potential for direct CO2 fertilization of P. grandidentata in the field and provide evidence for a new mechanism by which elevated atmospheric CO2 could influence seasonal carbon gain.
    Print ISSN: 0045-5067
    Electronic ISSN: 1208-6037
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1978-07-01
    Print ISSN: 0011-183X
    Electronic ISSN: 1435-0653
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...