ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Language
  • 1
    Call number: PIK B 020-96-0182
    Type of Medium: Monograph available for loan
    Pages: 87 p.
    ISBN: 9264146873
    Location: A 18 - must be ordered
    Branch Library: PIK Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Call number: M 96.0550 ; AWI G6-96-0128
    Description / Table of Contents: A lake, as a body of water, is in continuous interaction with the rocks and soils in its drainage basin, the atmosphere, and surface and groundwaters. Human industrial and agricultural activities introduce new inputs and processes into lake systems. This volume is a selection of ten contributions dealing with diverse aspects of lake systems, including such subjects as the geological controls of lake basins and their histories, mixing and circulation patterns in lakes, gaseous exchange between the water and atmosphere, and human input to lakes through atmospheric precipitation and surficial runoff. This work was written with a dual goal in mind: to serve as a textbook and to provide professionals with in-depth expositions and discussions of the more important aspects of lake systems.
    Type of Medium: Monograph available for loan
    Pages: XVI, 334 Seiten , Illustrationen
    Edition: 2. ed.
    ISBN: 3540578919
    Classification:
    Sedimentology
    Language: English
    Note: Contents: 1 Global Distribution of Lakes / M. MEYBECK. - 1 Introduction. - 2 Background Material and Approaches to Global Lake Census. - 2.1 Data Used. - 2.2 Approaches to Global Lake Census. - 3 General Laws of Lake Distribution. - 3.1 Lake Density . - 3.2 Limnic Ratio. - 4 Distribution of Lakes of Tectonic Origin. - 5 Lakes of Glacial Origin. - 5.1 Lake Densities. - 5.2 Global Deglaciated Area. - 5.3 Total Number of Glacial Lakes. - 6 Fluvial Lakes. - 7 Global Distribution of Crater Lakes. - 8 Global Distribution of Saline Lakes. - 8.1 Coastal Lagoons. - 8.2 Salinized Lakes due to Evaporation. - 9 Global Lake Distribution. - 9.1 Extrapolation Approach. - 9.2 Lake Type Approach. - 9.3 Climatic Typology Approach. - 9.4 Lake Distribution in Endorheic Areas. - 9.5 Global Dissolved Salt Distribution in Lakes. - 10 Major Changes in Global Lake Distribution in the Geological Past. - 10.1 Lake Ages. - 10.2 Historical Changes. - 10.3 Postglacial Changes. - 11 Discussion and Conclusions. - References. - 2 Hydrological Processes and the Water Budget of Lakes / T. C. WINTER. - 1 Introduction. - 2 Hydrological System with Regard to Lakes. - 2.1 Interaction of Lakes with Atmospheric Water. - 2.2 Interaction of Lakes with Surface Water. - 2.3 Interaction of Lakes with Subsurface Water. - 2.4 Change in Lake Volume. - 3 Summary. - References. - 3 Hydrological and Thermal Response of Lakes to Climate: Description and Modeling / S. W. HOSTETLER. - 1 Introduction. - 2 Hydrological Response. - 3 The Hydrological Budget. - 4 Hydrological Models. - 5 Thermal Response. - 5.1 Energy Budget and Energy Budget Models. - 5.2 Models and Modeling. - 6 Use of Models to Link Lakes with Climate Change. - 7 Input Data Sets. - 8 Sample Applications. - 9 Summary. - References. - 4 Mixing Mechanisms in Lakes / D. M. IMBODEN and A. WÜEST. - 1 Transport and Mixing. - 2 Lakes as Physical Systems. - 3 Fluid Dynamics: Mathematical Description of Advection and Diffusion. - 3.1 Equations of Fluid Motion. - 3.2 Turbulence, Reynolds' Stress, and Eddy Diffusion. - 3.3 Vertical Momentum Equation. - 3.4 Nonlocal Diffusion and Transilient Mixing. - 4 Density and Stability of Water Column. - 4.1 Equation of State of Water. - 4.2 Potential Temperature and Local Vertical Stability. - 5 Energy Fluxes: Driving Forces Behind Transport and Mixing. - 5.1 Thermal Energy. - 5.2 Potential Energy. - 5.3 Kinetic Energy. - 5.4 Turbulent Kinetic Energy Balance in Stratified Water. - 5.5 Internal Turbulent Energy Fluxes: Turbulence Cascade. - 6 Mixing Processes in Lakes. - 6.1 Waves and Mixing. - 6.2 Mixing in the Surface Layer. - 6.3 Diapycnal Mixing. - 6.4 Boundary Mixing. - 6.5 Double Diffusion. - 6.6 Isopycnal Mixing. - 7 Mixing and Its Ecological Relevance. - 7.1 Time Scales of Mixing. - 7.2 Reactive Species and Patchiness. - 7.3 Mixing and Growth: The Search for an Ecological Steering Factor. - References. - 5 Stable Isotopes of Fresh and Saline Lakes / J. R. GAT. - 1 Introduction. - 1.1 Isotope Separatio During Evaporation. - 2 Small-Area Lakes. - 2.1 Seasonal and Annual Changes. - 2.2 Deep Freshwater Lakes. - 2.3 Transient Surface-Water Bodies. - 3 Interactive and Feedback Systems. - 3.1 Network of Surface-Water Bodies. - 3.2 Recycling of Reevaporated Moisture into the Atmosphere. - 3.3 Large Lakes. - 3.4 Large-Area Lakes with Restricted Circulation. - 4 Saline Lakes. - 4.1 Isotope Hydrology of Large Salt Lakes. - 4.2 Ephemeral Salt Lakes and Sabkhas. - 5 Isotopie Paleolimnology. - 6 Conclusions: From Lakes to Oceans. - References. - 6 Exchange of Chemicals Between the Atmosphere and Lakes / P. VLAHOS, D. MACKAY, S. J. EISENREICH, and KC. HORNBUCKLE. - 1 Introduction. - 2 Air-Water Partitioning Equilibria. - 3 Diffusion Between Water and Air. - 4 Volatilization and Absorption: Double-Resistance Approach. - 5 Factors Affecting Mass-Transfer Coefficients. - 6 Partitioning of Chemical to Paniculate Matter in Air and Water. - 6.1 Air. - 6.2 Water. - 7 Atmospheric Deposition Processes. - 7.1 Dry Deposition. - 7.2 Wet Deposition. - 8 Specimen Calculation. - 8.1 Step 1: Physicochemical Properties. - 8.2 Step 2: Mass-Transfer Coefficients. - 8.3 Step 3: Sorption in Air and Water. - 8.4 Step 4: Equilibrium Status. - 8.5 Step 5: Volatilization and Deposition Rates. - 9 Role of Air-Water Exchange in Lake Mass Balances. - 10 Case Studies. - 10.1 Mass Balance on Siskiwit Lake, Isle Royale. - 10.2 Mass Balance on Lake Superior. - 10.3 Air-Water Exchange in Green Bay, Lake Michigan. - 10.4 Air-Water Exchange in Lake Superior. - 11 Conclusions. - References. - 7 Atmospheric Depositions: Impact of Acids on Lakes / W. STUMM and J. SCHNOOR. - Abstract. - 1 Introduction: Anthropogenic Generation of Acidity. - 1.1 Genesis of Acid Precipitation. - 2 Acidity and Alkalinity: Neutralizing Capacities. - 2.1 Transfer of Acidity (or Alkalinity) from Pollution Through the Atmosphere to Ecosystems. - 3 Acidification of Aquatic and Terrestrial Ecosystems. - 3.1 Disturbance of H+ Balance from Temporal or Spatial Decoupling of the Production and Mineralization of the Biomass. - 3.2 In Situ H+ Ion Neutralization in Lakes. - 3.3 Krug and Frink Revisited. - 4 Brønsted Acids and Lewis Acids: Pollution by Heavy Metals, as Influenced by Acidity. - 4.1 Cycling of Metals. - 4.2 Pb in Soils. - 5 Impact of Acidity on Ecology in Watersheds. - 5.1 Soils. - 5.2 Lakes. - 5.3 Nitrogen Saturation of Forests. - 6 Critical Loads. - 6.1 Critical Load Maps. - 6.2 Models for Critical Load Evaluation. - 7 Case Studies. - 7.1 Chemical Weathering of Crystalline Rocks in the Catchment Area of Acidic Ticino Lakes, Switzerland. - 7.2 Watershed Manipulation Project at Bear Brooks, Maine. - 8 Summary. - References. - 8 Redox-Driven Cycling of Trace Elements in Lakes / J. HAMILTON-TAYLOR and W. DAVISON. - 1 Introduction. - 2 Major Biogeochemical Cycles and Pathways. - 3 Iron and Manganese. - 3.1 Transformations and Cycling. - 3.2 Iron and Manganese Compounds as Carrier Phases. - 4 Sediment-Water Interface. - 4.1 Diffusive Flux from Sediments. - 4.2 Evidence of Little or No Diffusive Efflux from Sediments. - 4.3 Transient Remobilization. - 4.4 Diffusive Flux into Sediments. - 5 Pathways Involving Redox Reactions Directly: Case Studies. - 5.1 Arsenic. - 5.2 Chromium. - 5.3 239,240Pu. - 5.4 Selenium 6 Pathways Involving Redox Reactions Indirectly: Case Studies. - 6.1 137Cs. - 6.2 Stable Pb, 210Pb, and 210Po. - 6.3 Zinc. - 7 Summary and Conclusions. - References. - 9 Comparative Geochemistry of Marine Saline Lakes / F. T. MACKENZIE, S. VINK, R. WOLLAST, and L. CHOU. - 1 Introduction. - 2 General Characteristics of Marine Saline Lakes. - 3 Comparative Sediment-Pore-Water Reactions. - 3.1 Mangrove Lake, Bermuda. - 3.2 Solar Lake, Sinai. - 4 Conclusions. - References. - 10 Organic Matter Accumulation Records in Lake Sediments / P. A. MEYERS and R. ISHIWATARI. - 1 Introduction. - 1.1 Significance of Organic Matter in Lake Sediments. - 1.2 Origins of Organic Matter to Lake Sediments. - 1.3 Alterations of Organic Matter During Deposition. - 1.4 Similarities and Differences Between Organic Matter in Sediments of Lakes and Oceans. - 1.5 Dating of Lake-Sediment Records. - 2 Indicators of Sources and Alterations of Total Organic Matter in Lake Sediments. - 2.1 Source Information Preserved in C/N Ratios of Sedimentary Organic Matter. - 2.2 Source Information from Carbon-Stable Isotopic Compositions. - 2.3 Source Information from Nitrogen-Stable Isotopic Compositions. - 3 Origin and Alterations of Humic Substances. - 4 Sources and Alterations of Lipid Biomarkers. - 4.1 Alteration of Lipids During Deposition. - 4.2 Changes in Sources vs Selective Diagenesis. - 4.3 Effects of Sediment Grain Size on Geolipid Compositions. - 4.4 Source Records of Alkanes in Lake Sediments. - 4.5 Preserv
    Location: Upper compact magazine
    Location: AWI Reading room
    Branch Library: GFZ Library
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    ANU Press
    Publication Date: 2022-04-28
    Description: This collection is derived from a conference held at the Vanuatu National Museum and Cultural Centre (VCC) that brought together a large gathering of foreign and indigenous researchers to discuss diverse perspectives relating to the unique program of social, political and historical research and management that has been fostered in that island nation. While not diminishing the importance of individual or sole-authored methodologies, project-centered collaborative approaches have today become a defining characteristic of Vanuatu’s unique research environment. As this volume attests, this environment has included a dynamically wide range of both ni-Vanuatu and foreign researchers and related research perspectives, most centrally including archaeologists and anthropologists, linguists, historians, legal studies scholars and development practitioners. This emphasis on collaboration has emerged from an ongoing awareness across Vanuatu’s research community of the need for trained researchers to engage directly with pressing social and ethical concerns, and out of the proven fact that it is not just from the outcomes of research that communities or individuals may be empowered, but also through their modes and processes of implementation, as through the ongoing strength and value of the relationships they produce. With this in mind, the papers presented here go beyond the mere celebration of collaboration by demonstrating Vanuatu’s specific environment of cross-cultural research as a diffuse set of historically emergent methodological approaches, and by showing how these work in actual practice.
    Keywords: vanuatu ; social sciences ; cross-cultural studies ; congresses ; methodology ; Kastom ; Ni-Vanuatu ; Pottery ; Wok ; bic Book Industry Communication::J Society & social sciences::JH Sociology & anthropology::JHM Anthropology
    Language: English
    Format: image/jpeg
    Format: image/jpeg
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1963-09-01
    Print ISSN: 0003-021X
    Electronic ISSN: 1558-9331
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
  • 6
    Publication Date: 2017-10-26
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    In:  http://aquaticcommons.org/id/eprint/14661 | 403 | 2014-02-26 20:16:54 | 14661 | United States National Ocean Service
    Publication Date: 2021-07-01
    Description: Reef fish distributions are patchy in time and space with some coral reef habitats supporting higher densities (i.e., aggregations) of fish than others. Identifying and quantifying fish aggregations (particularly during spawning events) are often top priorities for coastal managers. However, the rapid mapping of these aggregations using conventional survey methods (e.g., non-technical SCUBA diving and remotely operated cameras) are limited by depth, visibility and time. Acoustic sensors (i.e., splitbeam and multibeam echosounders) are not constrained by these same limitations, and were used to concurrently map and quantify the location, density and size of reef fish along with seafloor structure in two, separate locations in the U.S. Virgin Islands. Reef fish aggregations were documented along the shelf edge, an ecologically important ecotone in the region. Fish were grouped into three classes according to body size, and relationships with the benthic seascape were modeled in one area using Boosted Regression Trees. These models were validated in a second area to test their predictive performance in locations where fish have not been mapped. Models predicting the density of large fish (≥29 cm) performed well (i.e., AUC = 0.77). Water depth and standard deviation of depth were the most influential predictors at two spatial scales (100 and 300 m). Models of small (≤11 cm) and medium (12–28 cm) fish performed poorly (i.e., AUC = 0.49 to 0.68) due to the high prevalence (45–79%) of smaller fish in both locations, and the unequal prevalence of smaller fish in the training and validation areas. Integrating acoustic sensors with spatial modeling offers a new and reliable approach to rapidly identify fish aggregations and to predict the density large fish in un-surveyed locations. This integrative approach will help coastal managers to prioritize sites, and focus their limited resources on areas that may be of higher conservation value.
    Keywords: Conservation ; Ecology ; Fisheries ; Management
    Repository Name: AquaDocs
    Type: article , TRUE
    Format: application/pdf
    Format: application/pdf
    Format: e85555
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    In:  http://aquaticcommons.org/id/eprint/14769 | 403 | 2014-02-28 02:26:07 | 14769 | United States National Ocean Service
    Publication Date: 2021-07-03
    Description: Using a 10-yr time-series data set, we analyzed the effects of two severe droughts on water-quality and ecosystem processes in a temperate, eutrophic estuary (Neuse River Estuary, North Carolina). During the droughts, dissolved inorganic nitrogen concentrations were on average 46–68% lower than the long-term mean due to reduced riverine input. Phytoplankton productivity and biomass were slightly below average for most of the estuary during a spring–autumn drought in 2002, but were dramatically lower than average throughout the estuary during an autumn–winter drought in 2007–2008. Droughts affected upper trophic levels through alteration of both habitat condition (i.e., bottom-water dissolved oxygen levels) and food availability. Bottomwater dissolved oxygen levels were near or slightly above average during the 2002 drought and during summer 2007. Concomitant with these modest improvements in bottom-water oxygen condition, fish kills were greatly reduced relative to the long-term average. Low-oxygen bottom-water conditions were more pronounced duringsummer 2008 in the latter stages of the 2007–2008 drought, and mesozooplankton abundances were eight-fold lower in summer 2008 than during nondrought years. Below-average mesozooplankton abundances persisted for well over 1 yr beyond cessation of the drought. Significant fish kills were observed in summer 2008 and 2009, perhaps due to the synergistic effects of hypoxia and reduced food availability. These results indicate that droughts can exert both ephemeral and prolonged multiyear influence on estuarine ecosystem processes and provide a glimpse into the future, when many regions of the world are predicted to face increased drought frequency and severity due to climate change.
    Keywords: Atmospheric Sciences ; Ecology ; Fisheries
    Repository Name: AquaDocs
    Type: article , TRUE
    Format: application/pdf
    Format: application/pdf
    Format: 627-638
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    NOAA/National Centers for Coastal Ocean Science | Charleston, SC
    In:  http://aquaticcommons.org/id/eprint/14775 | 403 | 2014-02-27 19:35:06 | 14775 | United States National Ocean Service
    Publication Date: 2021-07-03
    Description: NOAA’s Coral Reef Conservation program (CRCP) develops coral reef management priorities by bringing together various partners to better understand threats to coral reef ecosystems with the goal of conserving, protecting and restoring these resources. Place-based and ecosystem-based management approaches employed by CRCP require that spatially explicit information about benthic habitats and fish utilization are available to characterize coral reef ecosystems and set conservation priorities. To accomplish this, seafloor habitat mapping of coral reefs around the U.S. Virgin Islands (USVI) and Puerto Rico has been ongoing since 2004. In 2008, fishery acoustics surveys were added to NOAA survey missions in the USVI and Puerto Rico to assess fish distribution and abundance in relation to benthic habitats in high priority conservation areas. NOAA’s National Centers for Coastal Ocean Science (NCCOS) have developed fisheries acoustics survey capabilities onboard the NOAA ship Nancy Foster to complement the CRCP seafloor habitat mapping effort spearheaded by the Center for Coastal Monitoring and Assessment Biogeography Branch (CCMA-BB). The integration of these activities has evolved on the Nancy Foster over the three years summarized in this report. A strategy for improved operations and products has emerged over that time. Not only has the concurrent operation of multibeam and fisheries acoustics surveys been beneficial in terms of optimizing ship time and resources, this joint effort has advanced an integrated approach to characterizing bottom and mid-water habitats and the fishes associated with them. CCMA conducts multibeam surveys to systematically map and characterize coral reef ecosystems, resulting in products such as high resolution bathymetric maps, backscatter information, and benthic habitat classification maps. These products focus on benthic features and live bottom habitats associated with them. NCCOS Centers (the Center for Coastal Fisheries and Habitat Research and the Center for Coastal Environmental Health and Biomolecular Research) characterize coral reef ecosystems by using fisheries acoustics methods to capture biological information through the entire water column. Spatially-explicit information on marine resources derived from fisheries acoustics surveys, such as maps of fish density, supports marine spatial planning strategies and decision making by providing a biological metric for evaluating coral reef ecosystems and assessing impacts from pollution, fishing pressure, and climate change. Data from fisheries acoustics surveys address management needs by providing a measure of biomass in management areas, detecting spatial and temporal responses in distribution relative to natural and anthropogenic impacts, and identifying hotspots that support high fish abundance or fish aggregations. Fisheries acoustics surveys conducted alongside multibeam mapping efforts inherently couple water column data with information on benthic habitats and provide information on the heterogeneity of both benthic habitats and biota in the water column. Building on this information serves to inform resource managers regarding how fishes are organized around habitat structure and the scale at which these relationships are important. Where resource managers require place-based assessments regarding the location of critical habitats along with high abundances of fish, concurrent multibeam and fisheries acoustics surveys serve as an important tool for characterizing and prioritizing coral reef ecosystems.This report summarizes the evolution of fisheries acoustics surveys onboard the NOAA ship Nancy Foster from 2008 to 2010, in conjunction with multibeam data collection, aimed at characterizing benthic and mid-water habitats in high priority conservation areas around the USVI and Puerto Rico. It also serves as a resource for the continued development of consistent data products derived from acoustic surveys. By focusing on the activities of 2010, this report highlights the progress made to date and illustrates the potential application of fisheries data derived from acoustic surveys to the management of coral reef ecosystems.
    Keywords: Ecology ; Fisheries ; Management
    Repository Name: AquaDocs
    Type: monograph
    Format: application/pdf
    Format: application/pdf
    Format: 44
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    In:  larisa.avens@noaa.gov | http://aquaticcommons.org/id/eprint/14857 | 403 | 2014-03-07 19:00:02 | 14857 | United States National Marine Fisheries Service
    Publication Date: 2021-06-26
    Description: Although growth rate and age data are essential for leatherback management, estimates of these demographic parameters remain speculative due to the cryptic life history of this endangered species. Skeletochronological analysis of scleral ossicles obtained from 8 captive, known-age and 33 wild leatherbacks originating from the western North Atlantic was conducted to characterize the ossicles and the growth marks within them. Ages were accurately estimated for the known-age turtles, and their growth mark attributes were used to calibrate growth mark counts for the ossicles from wild specimens. Due to growth mark compaction and resorption, the number of marks visible at ossicle section tips was consistently and significantly greater than the number visible along the lateral edges, demonstrating that growth mark counts should be performed at the tips so that age is not underestimated. A correction factor protocol that incorporated the trajectory of early growth increments was used to estimate the number of missing marks in those ossicles exhibiting resorption, which was then added to the number of observed marks to obtain an age estimate for each turtle. A generalized smoothing spline model, von Bertalanffy growth curve, and size-at-age function were used to obtain estimates of age at maturity for leatherbacks in the western North Atlantic. Results of these analyses suggest that median age at maturation for leatherbacks in this part of the world may range from 24.5 to 29 yr. These age estimates are much greater than those proposed in previous studies and have significant implications for population management and recovery.
    Keywords: Ecology ; Fisheries ; Management
    Repository Name: AquaDocs
    Type: article , TRUE
    Format: application/pdf
    Format: application/pdf
    Format: 165-177
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...