ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Publication Date: 2015-05-31
    Description: High-energy observations of extreme BL Lac objects, such as 1ES 0229+200 or 1ES 0347–121, recently focused interest both for blazar and jet physics and for the implication on the extragalactic background light and intergalactic magnetic field estimate. However, the number of these extreme highly peaked BL Lac objects (EHBL) is still rather small. Aiming at increase their number, we selected a group of EHBL candidates starting from the BL Lac sample of Plotkin et al. ( 2011 ), considering those undetected (or only barely detected) by the Large Area Telescope onboard Fermi and characterized by a high X-ray versus radio flux ratio. We assembled the multiwavelength spectral energy distribution of the resulting nine sources, profiting of publicly available archival observations performed by Swift , GALEX , and Fermi satellites, confirming their nature. Through a simple one-zone synchrotron self-Compton model we estimate the expected very high energy flux, finding that in the majority of cases it is within the reach of present generation of Cherenkov arrays or of the forthcoming Cherenkov Telescope Array.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-05-21
    Description: PKS 0521–36 is an active galactic nucleus (AGN) with uncertain classification. We investigate the properties of this source from radio to -rays. The broad emission lines in the optical and ultraviolet bands and steep radio spectrum indicate a possible classification as an intermediate object between broad-line radio galaxies (BLRG) and steep spectrum radio quasars (SSRQ). On pc-scales PKS 0521–36 shows a knotty structure similar to misaligned AGN. The core dominance and the -ray properties are similar to those estimated for other SSRQ and BLRG detected in -rays, suggesting an intermediate viewing angle with respect to the observer. In this context the flaring activity detected from this source by Fermi -Large Area Telescope between 2010 June and 2012 February is very intriguing. We discuss the -ray emission of this source in the framework of the structured jet scenario, comparing the spectral energy distribution (SED) of the flaring state in 2010 June with that of a low state. We present three alternative models corresponding to three different choices of the viewing angles v  = 6°, 15°, and 20°. We obtain a good fit for the first two cases, but the SED obtained with v  = 15° if observed at a small angle does not resemble that of a typical blazar since the synchrotron emission should dominate by a large factor (~100) the inverse Compton component. This suggests that a viewing angle between 6° and 15° is preferred, with the rapid variability observed during -ray flares favouring a smaller angle. However, we cannot rule out that PKS 0521–36 is the misaligned counterpart of a synchrotron-dominated blazar.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-06-07
    Description: We recently proposed that structured (spine-sheath) jets associated with BL Lac objects could offer a suitable environment for the production of the extragalactic high-energy ( E  〉 100 TeV) neutrino recently revealed by IceCube. Our previous analysis was limited to low-power BL Lac objects. We extend our preliminary study to the entire BL Lac population, assuming that the entire diffuse emission is accounted for by these sources. The neutrino output from a single source depends on a relatively large number of parameters. However, for several of them we have constraints coming from observations and previous application of the structured jet model to blazar and radiogalaxy emission. The observed neutrino spectrum then fixes the remaining free parameters. We assume that the power of cosmic rays as well as the radiative luminosity of the sheath depends linearly on the jet power. In turn, we assume that the latter is well traced by the -ray luminosity. We exploit the BL Lac -ray luminosity function and its cosmic evolution as recently inferred from Fermi -LAT data to derive the expected neutrino cumulative intensity from the entire BL Lac population. When considering only the low-power BL Lacs, a large cosmic ray power for each source is required to account for the neutrino flux. Instead, if BL Lacs of all powers produce neutrinos, the power demand decreases, and the required cosmic ray power becomes of the same order of the radiative jet power. In our scheme, the maximum energy of cosmic rays is constrained to be  few PeV by the lack of events above few PeV. Although such a value is obtained through a fine-tuning with the data, we show that it could be possibly related to the equilibrium between cooling and acceleration processes for high-energy cosmic rays. We also discuss the prospects for the direct association of IceCube events with BL Lacs, providing an estimate of the expected counts for the most promising sources.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-07-24
    Description: We discuss the -ray emission of the radiogalaxy NGC 1275 (the central galaxy of the Perseus Cluster), detected by Fermi -LAT (very-high energies) and MAGIC, in the framework of the ‘spine-layer’ scenario, in which the jet is assumed to be characterized by a velocity structure, with a fast spine surrounded by a slower layer. The existence of such a structure in the parsec scale jet of NGC 1275 has been recently proved through VLBI observations. We discuss the constraints that the observed spectral energy distribution imposes to the parameters and we present three alternative models, corresponding to three different choices of the angles between the jet and the line of sight ( v  = 6°, 18° and 25°). While for the case with v  = 6° we obtain an excellent fit, we consider this solution unlikely, since such small angles seem to be excluded by radio observations of the large-scale jet. For v  = 25° the required large intrinsic luminosity of the soft (IR-optical) component of the spine determines a large optical depth for -rays through the pair production scattering -〉 e + e – , implying a narrow cut-off at ~50 GeV. We conclude that intermediate angles are required. In this case the low frequency and the high-energy emissions are produced by two separate regions and, in principle, a full variety of correlations is expected. The correlation observed between the optical and the -ray flux, close to linearity, is likely linked to variations of the emissivity of the spine.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-06-12
    Description: We recently proposed that structured (spine-sheath) jets associated with BL Lac objects could offer a suitable environment for the production of the extragalactic high-energy ( E  〉 100 TeV) neutrino recently revealed by IceCube. Our previous analysis was limited to low-power BL Lac objects. We extend our preliminary study to the entire BL Lac population, assuming that the entire diffuse emission is accounted for by these sources. The neutrino output from a single source depends on a relatively large number of parameters. However, for several of them we have constraints coming from observations and previous application of the structured jet model to blazar and radiogalaxy emission. The observed neutrino spectrum then fixes the remaining free parameters. We assume that the power of cosmic rays as well as the radiative luminosity of the sheath depends linearly on the jet power. In turn, we assume that the latter is well traced by the -ray luminosity. We exploit the BL Lac -ray luminosity function and its cosmic evolution as recently inferred from Fermi -LAT data to derive the expected neutrino cumulative intensity from the entire BL Lac population. When considering only the low-power BL Lacs, a large cosmic ray power for each source is required to account for the neutrino flux. Instead, if BL Lacs of all powers produce neutrinos, the power demand decreases, and the required cosmic ray power becomes of the same order of the radiative jet power. In our scheme, the maximum energy of cosmic rays is constrained to be  few PeV by the lack of events above few PeV. Although such a value is obtained through a fine-tuning with the data, we show that it could be possibly related to the equilibrium between cooling and acceleration processes for high-energy cosmic rays. We also discuss the prospects for the direct association of IceCube events with BL Lacs, providing an estimate of the expected counts for the most promising sources.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-06-12
    Description: High-energy observations of extreme BL Lac objects, such as 1ES 0229+200 or 1ES 0347–121, recently focused interest both for blazar and jet physics and for the implication on the extragalactic background light and intergalactic magnetic field estimate. However, the number of these extreme highly peaked BL Lac objects (EHBL) is still rather small. Aiming at increase their number, we selected a group of EHBL candidates starting from the BL Lac sample of Plotkin et al. ( 2011 ), considering those undetected (or only barely detected) by the Large Area Telescope onboard Fermi and characterized by a high X-ray versus radio flux ratio. We assembled the multiwavelength spectral energy distribution of the resulting nine sources, profiting of publicly available archival observations performed by Swift , GALEX , and Fermi satellites, confirming their nature. Through a simple one-zone synchrotron self-Compton model we estimate the expected very high energy flux, finding that in the majority of cases it is within the reach of present generation of Cherenkov arrays or of the forthcoming Cherenkov Telescope Array.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-01-02
    Description: The current paradigm foresees that relativistic jets are launched as magnetically dominated flows, whose magnetic power is progressively converted to kinetic power of the matter of the jet, until equipartition is reached. Therefore, at the end of the acceleration phase, the jet should still carry a substantial fraction (half) of its power in the form of a Poynting flux. It has been also argued that, in these conditions, the best candidate particle acceleration mechanism is efficient reconnection of magnetic field lines, for which it is predicted that magnetic field and accelerated relativistic electron energy densities are in equipartition. Through the modelling of the jet non-thermal emission, we explore if equipartition is indeed possible in BL Lac objects, i.e. low-power blazars with weak or absent broad emission lines. We find that one-zone models (for which only one region is involved in the production of the radiation we observe) the particle energy density is largely dominating (by 1–2 orders of magnitude) over the magnetic one. As a consequence, the jet kinetic power largely exceeds the magnetic power. Instead, if the jet is structured (i.e. made by a fast spine surrounded by a slower layer), the amplification of the inverse Compton emission due to the radiative interplay between the two components allows us to reproduce the emission in equipartition conditions.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...