ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Publication Date: 1988-02-01
    Description: RBCs from individuals with sickle cell disease are more susceptible to oxidant damage. Because key antioxidant defense reactions are linked to the pyridine nucleotides nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP), we tested the hypothesis that the RBC redox potential as manifested by the NADH/[NAD+ + NADH] and NADPH/[NADP+ + NADPH] ratios is decreased in sickle erythrocytes. Our data demonstrate that sickle RBCs have a significant decrease in the NADH/[NAD+ + NADH] ratio compared with normal RBCs (P less than .00005). Interestingly, sickle RBCs also had a significant increase in total NAD content compared with normal RBCs (P less than .00005). In contrast, although sickle RBCs had a significant increase in the total NADP content compared with normal RBCs (P less than .00005), sickle RBCs had no significant alteration in the NADPH/[NADP+ + NADPH] ratio. High reticulocyte controls demonstrated that these changes were not related to cell age. Thus, sickle RBCs have a decrease in NAD redox potential that may be a reflection of their increased oxidant sensitivity. The changes in these pyridine nucleotides may have further metabolic consequences for the sickle erythrocyte.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1982-11-01
    Description: We evaluated the erythrocytes of two patients with hereditary pyrimidine 5′-nucleotidase deficiency. Significant findings included an increased reduced glutathione content, increased incubated Heinz body formation, a positive ascorbate cyanide test, and decreased intraerythrocytic pH. The pentose phosphate shunt activity of the patients' red cells as measured by the release of 14CO2 from 14C-1- glucose was decreased compared to high reticulocyte controls. Glucose-6- phosphate dehydrogenase (G6PD) activity in hemolysates from control erythrocytes was inhibited 43% by 5.5 mM cytidine 5′-triphosphate (CTP) and 50% by 5.5 mM in uridine 5′-triphosphate (UTP) at pH 7.1. CTP was a competitive inhibitor for G6P (Ki = 1.7 mM) and a noncompetitive inhibitor for NADP+ (Ki = 7.8 mM). Glutathione peroxidase, glutathione reductase, and 6-phosphogluconate dehydrogenase were not affected by these compounds. Pentose phosphate shunt activity in control red cell hemolysate at pH 7.1 was inhibited to a similar degree by 5.5 mM CTP or UTP. Since the intracellular concentrations of G6P and NADP+ are below their KmS for G6PD, these data suggest that high concentrations of pyrimidine 5′-nucleotides depress pentose phosphate shunt activity in pyrimidin 5′-nucleotidase deficiency. Thus, this impairment of the pentose phosphate pathway appears to contribute to the pathogenesis of hemolysis in pyrimidine 5′-nucleotidase deficiency hemolytic anemia.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1988-08-01
    Description: RBCs from patients with hemolytic anemia due to pyruvate kinase (PK) deficiency are characterized by a decreased total adenine and pyridine nucleotide content. Because phosphoribosylpyrophosphate (PRPP) is a precursor of both adenine and pyridine nucleotides, we investigated the ability of intact PK-deficient RBCs to accumulate PRPP. The rate of PRPP formation in normal RBCs (n = 11) was 2.89 +/- 0.80 nmol/min.mL RBCs. In contrast, the rate of PRPP formation in PK-deficient RBCs (n = 4) was markedly impaired at 1.03 +/- 0.39 nmol/min.mL RBCs. Impaired PRPP formation in these cells was not due to the higher proportion of reticulocytes. To study the mechanism of impaired PRPP formation, PK deficiency was simulated by incubating normal RBCs with fluoride. In normal RBCs, fluoride inhibited PRPP formation, caused adenosine triphosphate (ATP) depletion, prevented 2,3-diphosphoglycerate (DPG) depletion, and inhibited pentose phosphate shunt (PPS) activity. These results together with other data suggest that impaired PRPP formation is mediated by changes in ATP and DPG concentration, which lead to decreased PPS and perhaps decreased hexokinase and PRPP synthetase activities. Impaired PRPP formation may be a mechanism for the decreased adenine and pyridine nucleotide content in PK-deficient RBCs.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1984-03-01
    Description: Recent investigations have disclosed a decrease in pentose phosphate shunt activity in hereditary pyrimidine 5′-nucleotidase deficiency. Clinical lead poisoning is associated with an acquired decrease in pyrimidine 5′-nucleotidase activity. The current investigations were undertaken (1) to determine if pentose shunt activity was decreased in erythrocytes exposed to lead, and (2) to compare the mechanism of inhibition to that seen in hereditary pyrimidine 5′-nucleotidase deficiency. Normal erythrocytes incubated with lead acetate in vitro demonstrated increased Heinz body formation, decreased reduced glutathione, a positive ascorbate cyanide test, and a reversible suppression of pentose shunt activity in the intact erythrocyte. Lead acetate added to normal red cell hemolysates markedly inhibited the activities of glucose-6-phosphate dehydrogenase (G6PD) and phosphofructokinase. The mean Kis of lead for glucose-6-phosphate and nicotinamide adenine dinucleotide phosphate (NADP) for G6PD were 1.5 microM and 2.1 microM, respectively, which is within the range of intraerythrocytic lead concentrations found in clinical lead poisoning. Magnesium enhanced the ability of lead to inhibit G6PD. Thus, the shortened erythrocyte survival in lead poisoning appears to be due, in part, to increased oxidant sensitivity secondary to inhibition of G6PD and the pentose shunt. The mechanism of shunt inhibition is, in part, similar to that seen in hereditary pyrimidine 5′-nucleotidase deficiency.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1982-11-01
    Description: We evaluated the erythrocytes of two patients with hereditary pyrimidine 5′-nucleotidase deficiency. Significant findings included an increased reduced glutathione content, increased incubated Heinz body formation, a positive ascorbate cyanide test, and decreased intraerythrocytic pH. The pentose phosphate shunt activity of the patients' red cells as measured by the release of 14CO2 from 14C-1- glucose was decreased compared to high reticulocyte controls. Glucose-6- phosphate dehydrogenase (G6PD) activity in hemolysates from control erythrocytes was inhibited 43% by 5.5 mM cytidine 5′-triphosphate (CTP) and 50% by 5.5 mM in uridine 5′-triphosphate (UTP) at pH 7.1. CTP was a competitive inhibitor for G6P (Ki = 1.7 mM) and a noncompetitive inhibitor for NADP+ (Ki = 7.8 mM). Glutathione peroxidase, glutathione reductase, and 6-phosphogluconate dehydrogenase were not affected by these compounds. Pentose phosphate shunt activity in control red cell hemolysate at pH 7.1 was inhibited to a similar degree by 5.5 mM CTP or UTP. Since the intracellular concentrations of G6P and NADP+ are below their KmS for G6PD, these data suggest that high concentrations of pyrimidine 5′-nucleotides depress pentose phosphate shunt activity in pyrimidin 5′-nucleotidase deficiency. Thus, this impairment of the pentose phosphate pathway appears to contribute to the pathogenesis of hemolysis in pyrimidine 5′-nucleotidase deficiency hemolytic anemia.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1986-11-01
    Description: Pyruvate kinase (PK)-deficient RBCs have several unexplained metabolic abnormalities, such as decreased concentrations of total adenine nucleotides (AMP, ADP, and ATP) and total (oxidized and reduced) nicotinamide adenine dinucleotide (NAD). Because 5-phosphoribosyl-1- pyrophosphate (PRPP) is an intermediate in the synthesis of adenine nucleotides and NAD, we investigated PRPP synthetase (PRPPS), the enzyme responsible for PRPP synthesis. This enzyme is regulated, in part, by changes in its state of subunit aggregation. The proportion of aggregated PRPPS can be altered in vitro by ATP and 2,3- diphosphoglycerate (DPG). Because PK-deficient RBCs have decreased ATP and increased DPG concentrations, we examined the state of subunit aggregation of PRPPS in RBCs from normal and PK-deficient subjects, using gel permeation chromatography. Young normal RBCs have more aggregated PRPPS than do older RBCs. In contrast, due to their decreased ATP and increased DPG concentrations, PK-deficient RBCs contain less aggregated PRPPS than do RBCs of comparable age without PK deficiency. These data suggest that PRPPS should be less active in vivo in PK-deficient RBCs. This may play a key role in mediating the decreases in total adenine nucleotide and total NAD concentrations in these RBCs.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1987-04-01
    Description: Erythrocytes from individuals with pyruvate kinase (PK) deficiency have approximately half the total (oxidized and reduced) nicotinamide adenine dinucleotide (NAD) of normal erythrocytes. In order to elucidate the mechanism(s) for the decrease in total NAD, we examined NAD synthesis in intact erythrocytes. It is demonstrated that NAD synthesis is impaired in PK-deficient erythrocytes to a degree that is dependent on the PK activity and adenosine 5′-triphosphate (ATP) concentration of these cells. After incubation in the presence of fluoride, which simulates the characteristics of PK deficiency by inhibiting enolase, normal erythrocytes had impaired NAD synthesis and decreased ATP concentrations. Fluoride did not inhibit NAD synthesis in a hemolysate system that is not dependent on glycolysis for ATP generation. These data suggest that fluoride does not inhibit the enzymes of NAD synthesis and that impairment of NAD synthesis by fluoride is mediated by decreased ATP formation. Thus, it is concluded that impaired NAD synthesis in PK-deficient erythrocytes is caused by decreased ATP formation due to the PK deficiency. Since the rate of glycolysis is limited by the availability of NAD+, it is suggested that impaired NAD synthesis causes further ATP depletion and thereby may enhance hemolysis in PK-deficient erythrocytes.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1990-04-01
    Description: We have examined properties of nicotinamide adenine dinucleotide (NAD) synthetase from human erythrocytes. The enzyme was found to be cold labile and extremely unstable in crude hemolysate, with complete loss of activity occurring after 24 hours at 4 degrees C. However, maintenance of crude hemolysate at 20 to 25 degrees C in the presence of EDTA and KCl increased NAD synthetase stability substantially (half- life = 10 days). Using these conditions, NAD synthetase was purified 3,100-fold with a 29% yield using DEAE-cellulose column chromatography, ammonium sulfate fractionation, and dialysis. The apparent Michaelis- Menten constants for nicotinic acid adenine dinucleotide (NAAD), adenosine triphosphate, Mg2+, glutamine, and K+ were 0.108, 0.154, 1.36, 2.17, and 8.32 mmol/L, respectively. The pH optimum ranged between 6.8 and 7.4, and the molecular weight was estimated to be 483 +/- 5 Kd. The enzyme was markedly inhibited by Pb2+ and Zn2+, with concentrations necessary for 50% inhibition of activity of 1.3 and 2.0 mumol/L, respectively. The incubation of intact red blood cells with lead followed by rigorous washing to remove lead abolished nearly all NAD synthetase activity. In contrast, glucose-6-phosphate dehydrogenase activity, which is not sensitive to lead, was unaffected, whereas pyrimidine 5′-nucleotidase activity, which is sensitive to lead, was decreased 30% to 50% under these conditions. More importantly, patients with lead overburden (34 to 72 micrograms Pb2+/dL blood) all had markedly decreased NAD synthetase activity. These data together with other results suggest that erythrocyte NAD synthetase activity is a sensitive indicator of lead exposure in humans.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1983-05-01
    Description: The tenfold increase in red cell 2,3-diphosphoglycerate (DPG) concentration that occurs during the first 5 days of life in lambs is an important adaptation to extrauterine life. In lambs, DPG reduces hemoglobin oxygen affinity by the Bohr effect. Our data on 10 neonatal lambs suggest that the biochemical mechanism underlying this DPG increase involves the following: (1) a rise in plasma glucose from 40 to 100 mg/dl in the first 48 hr of life, which allows for increased glucose consumption in the highly glucose-permeable neonatal RBC; (2) a transitory rise in blood pH begins at birth, peaks at about 20 hr, and falls slightly; (3) the pH increase coincides with a threefold increase in RBC fructose-1,6-diphosphate (FDP) concentration due, we believe, to pH activation of phosphofructokinase; (4) glycolytic intermediates after the glyceraldehyde-3-phosphate dehydrogenase (GAPD) step do not rise in the first 24 hr of life, possibly due to insufficient inorganic phosphate (Pi), a substrate of GAPD; (5) plasma Pi increases from about 7 mg/dl at birth to 11 mg/dl at 72 hr, activates the GAPD, and FDP levels decline; and (6) the in vitro activity of the DPG synthetic enzyme, DPG mutase, is increased 12-fold in neonatal compared to adult RBC. We conclude that the postnatal rise in DPG is explained at least in part by the sequential effects of these metabolic changes.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1990-04-15
    Description: Plasmodium falciparum-infected red blood cells (RBCs) are characterized by increases in the activity of glycolytic enzymes. Because nicotinamide adenine dinucleotide (NAD) and NAD phosphate (NADP) are cofactors in the reactions of glycolysis and pentose phosphate shunt, we have examined NAD and NADP content in P. falciparum-infected RBCs. Although NADP content was not significantly altered, NAD content was increased approximately 10-fold in infected RBCs (66% parasitemia) compared with uninfected control RBCs. To determine the mechanism for the increase in NAD content, we examined the activity of several NAD biosynthetic enzymes. It is known that normal human RBCs make NAD exclusively from nicotinic acid and lack the capacity to make NAD from nicotinamide. We demonstrate that infected RBCs have readily detectable nicotinamide phosphoribosyltransferase (NPRT), the first enzyme in the NAD biosynthetic pathway that uses nicotinamide, and abundant nicotinamide deamidase, the enzyme that converts nicotinamide to nicotinic acid, thereby indicating that infected RBCs can make NAD from nicotinamide. In addition, infected RBCs have a threefold increase in nicotinic acid phosphoribosyltransferase (NAPRT), the first enzyme in the NAD biosynthetic pathway that uses nicotinic acid. Thus, the increase in NAD content in P falciparum-infected RBCs appears to be mediated by increases in NAD synthesis from both nicotinic acid and nicotinamide.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...