ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 78 (1995), S. 5926-5935 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Oxygen (O) and carbon (C) coprecipitation in Czochralski Si is studied in terms of a diffusion-limited growth model. The interfacial energy increase upon C incorporation into oxide precipitates as well as the changes of O and C concentrations in the Si matrix with annealing time have been taken into account. A comparison of the model predictions with available experimental data has led to the following conclusions: (i) Regardless of the C content in the crystal, it is necessary to introduce sinks for the precipitation-induced excess Si self-interstitials (I) in the matrix for high annealing temperatures. (ii) At annealing temperatures below about 1000 °C, the enhancement effect of C on O precipitation results primarily from an increase in the precipitate density. (iii) The transition in the C precipitation behavior observed in C-rich Si crystals at annealing temperatures around 800 °C is related to a change in the availability of effective I sinks in the Si matrix at these temperatures. (iv) An enhancement of C diffusivity in the presence of excess I plays an important role in increasing the precipitate growth rate, particularly at low temperatures for which no efficient I sinks are available in the Si matrix. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 77 (1995), S. 5563-5571 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The partitioning of point defect species during diffusion controlled precipitation of a misfitting compound in Czochralski silicon is studied using the principle of maximum degradation rate of the total system free energy. The degradation rate of the system free energy is obtained from the entropy production due to mass diffusion in the matrix. The results are then compared with those obtained using the principle of maximum growth rate. It is shown that, for a precipitation process involving more than one chemical or structural component species with their concentrations deviating from the appropriate thermal equilibrium values, the maximum growth rate description does not generally correspond to that of the maximum degradation rate of the system free energy. The results are then applied to oxygen precipitation in silicon, showing some equilibrium characteristics pertinent to a multicomponent system with intrinsic point defects acting as pseudocomponents. It is also shown that, depending on the intrinsic point defect concentrations at the far field of diffusion, the oxide precipitate can grow either by emitting or by absorbing both vacancies and Si self-interstitials. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 61 (1987), S. 1841-1845 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Recent experiments have shown that quantum well structures grown on a GaAs substrate can be destroyed by dopant diffusion. It is observed that existing models proposed to explain the phenomena are not in accordance with most available experimental results. We propose an alternative mechanism to explain the quantum well destruction phenomenon. The mechanism is based on the effect of the Fermi level on the concentrations of charged point defects which contribute to diffusion processes. This conceptually simple mechanism is consistent with most available experimental results on a qualitative basis. In this mechanism, the doping level and the doping type (p or n) are of primary importance, and not some other detailed atomistic nature of the dopant species. Furthermore, it is the presence of the dopant that is important, and not its motion, i.e., its diffusion.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 90 (2001), S. 5388-5394 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: In silicon solar cell fabrication, impurity gettering from Si by an aluminum layer and indiffusion of Al for creating the back surface field (BSF) are inherently carried out in the same process. We have modeled these two processes and analyzed their impact on solar cell efficiency. The output of gettering and Al indiffusion modeling is used as an input for calculation of solar cell efficiency. The cell efficiency gain is obtained as a function of the processes duration. To check the relative contributions of gettering and BSF in improving the cell efficiency, their effects are evaluated together as well as separately. It is found that, for solar cells fabricated from low quality, multicrystalline Si, the efficiency gain is solely due to gettering. In solar cells made of high quality Si, the efficiency gain is primarily due to gettering, but the BSF may play a significant role if the cell thickness is less than about 200 μm. The two effects are found to be synergetic. The model provides a means for optimization of the temperature regime for both processes, as well as for maximization of solar cell efficiency. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 86 (1999), S. 2453-2458 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Physical and numerical modeling of impurity gettering from multicrystalline Si for solar cell production has been carried out using Fe as a model impurity. Calculated change of nonradiative recombination coefficient of minority carriers in the course of gettering is used as a tool for evaluating the gettering efficiency. A derivation of the capture cross section of impurity precipitates, as compared to single atom recombination centers, is presented. Low efficiency of the conventional application of the gettering process is explained by the modeling results. The variable temperature gettering process is modeled and predicted to provide high gettering efficiency and short needed gettering times. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 65 (1989), S. 561-563 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The stability of thin interfacial oxide layers between bonded silicon wafers is investigated experimentally and theoretically. For usual bonding temperatures around 1100 °C and typical times of a few hours, the oxygen diffusivity is not high enough to allow the oxide layer dissolution. For aligned wafers of the same orientation, the oxide layer instead tends to disintegrate in order to minimize the SiO2/Si interface energy. It is possible to stabilize a uniform interfacial oxide layer by rotationally misorienting the two wafers by an angle θ exceeding a critical angle, θ crit, estimated to be between 1° and 5°.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 91 (2002), S. 5508-5508 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 73 (1993), S. 150-157 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A model for the effect of Zn indiffusion on enhancing the GaAs/AlAs superlattice (SL) disordering process, which combines recently proposed models for Ga self-diffusion and Zn diffusion in GaAs, is presented. Four coupled partial differential equations describing the process were solved numerically. Satisfactory agreement between the simulated results and experimental data available in the literature is obtained. At a given temperature, the used values for the diffusion coefficient and the thermal equilibrium concentration of the responsible point defect species, the doubly positively charged Ga self-interstitials IGa2+, are a consistent splitting of the known Ga self-diffusion coefficient dominated by IGa2+. Quantitatively, the SL disordering enhancement is mainly due to the Fermi-level effect while an IGa2+ supersaturation also makes a small contribution. Because of p-doping by Zn acceptor atoms, the IGa2+ concentration is increased tremendously via the Fermi-level effect. An IGa2+ supersaturation also develops because the IGa2+ generation rate is higher than its removal rate. The enhanced SL disordering process mainly proceeds under the Ga-rich SL composition conditions. The Zn-indiffusion-enhanced Al-Ga interdiffusion coefficient shows an apparent dependence on the Zns− concentration differing slightly from a quadratic relationship.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 72 (1992), S. 1864-1873 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The resistance and structural stabilities of the epitaxial CoSi2 films, grown on (001) Si substrates using sequentially deposited Ti-Co bimetallic layer source materials, have been investigated by further anneals under extended conditions. In contrast to reported polycrystalline silicide film cases, the epitaxial CoSi2 films are very stable under the additional rapid thermal annealing treatment at 1100 °C for times from 10 to 60 s. This means that such CoSi2 films are able to stand the further heat treatment required in the ultralarge-scale integration regime of Si integrated circuit fabrication. The quality of the further annealed films has been actually improved: The film resistivity has decreased to reach a value as low as 10 μΩ cm, and the film structure has become more perfect, e.g., the densities of antiphase domains and film-Si interface facets have been decreased. For technological applications, it is necessary to remove the Ti-Co-Si alloy layer formed concomitantly on top of the as-grown CoSi2 film. This has been accomplished by chemical etching using the standard buffered oxide etch solution. In the present experiment, as-grown epitaxial CoSi2 films with and without the Ti-Co-Si alloy top layers have been both included and the same film resistance and structural stabilities have been observed. Thus, the excellent resistance and structural thermal stabilities of the present CoSi2 films result from the single-crystal nature of the films and not the effect of the top Ti-Co-Si capping layer. Mechanisms responsible for the excellent quality of the epitaxial CoSi2 films, as well as for the unacceptable quality of the polycrystalline silicide films, have been discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Al–Ga interdiffusion, carbon acceptor diffusion, and hole reduction were studied in carbon doped Al0.4Ga0.6As/GaAs superlattices (SL) annealed under different ambient As4 pressure conditions in the temperature range of 825 °C–960 °C. The SL were doped with carbon to an initial acceptor concentration of ∼2.9×1019 cm−3. Al–Ga interdiffusion was found to be most prominent under Ga-rich annealing ambient conditions, with interdiffusivity values, DAl–Ga, turned out to be about two orders of magnitude smaller than those predicted by the Fermi-level effect model. Under As-rich ambient conditions, the DAl–Ga values are in approximate agreement with those predicted by the Fermi-level effect model. The hole concentrations in the SL decreased significantly after annealing under As-rich and As-poor ambient conditions, while those after annealing in the Ga-rich ambient were almost totally intact. By analyzing the measured hole concentration profiles, it has been found that both carbon acceptor diffusion and reduction have occurred during annealing. Both the carbon acceptor diffusivity data and the carbon acceptor reduction coefficient data are characterized approximately by a dependence on As4 pressure values to the one-quarter power. These As4 pressure dependencies indicate that carbon diffuses via the interstitialcy or interstitial–substitutional mechanism, while hole reduction is governed by a carbon acceptor precipitation mechanism.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...