ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Publication Date: 2012-03-14
    Description: We coupled the process-based NIES Integrated Catchment-based Eco-hydrology (NICE) model to an urban canopy model (UCM) and the Regional Atmospheric Modeling System (RAMS) in order to simulate the effect of urban geometry and anthropogenic exhaustion on the hydrothermal changes in the atmospheric/land and the interfacial areas of the Japanese megalopolis. The simulation was conducted with multi-scale in horizontally regional–urban–point levels, and in vertically atmosphere–surface–unsaturated–saturated layers. The model reproduced reasonably the observed hydrothermal values by using ground-truth data in various types of natural/artificial land covers. The simulated results also suggested that the latent heat flux in new water-holding pavement (consisting of porous asphalt and water-holding filler made of steel by-products based on silica compound) has a strong impact on hydrologic cycle and cooling temperature in comparison with the observed heat budget by newly incorporating the effect of water amount on the heat conductivity in the pavement. Furthermore, the model predicted the hydrothermal changes under two types of land cover scenarios to promote evaporation and to reduce air temperature against heat island phenomenon. Finally, we evaluated the relationship between the effect of groundwater use to ameliorate the heat island and the effect of infiltration on the water cycle in the catchment. These procedures to integrate the multi-scaled model simulation with political scenario based on the effective management of water resources as heat sink/source would be very powerful approaches to recovering a sound hydrologic cycle and create thermally-pleasing environments in the megalopolis. Copyright © 2012 John Wiley & Sons, Ltd.
    Print ISSN: 0885-6087
    Electronic ISSN: 1099-1085
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-04-19
    Description: We coupled the process-based NIES Integrated Catchment-based Eco-hydrology (NICE) model to an urban canopy model (UCM) and the Regional Atmospheric Modeling System (RAMS) in order to simulate the effect of urban geometry and anthropogenic exhaustion on the hydrothermal changes in the atmospheric/land and the interfacial areas of the Japanese megalopolis. The simulation was conducted with multi-scale in horizontally regional–urban–point levels, and in vertically atmosphere–surface–unsaturated–saturated layers. The model reproduced reasonably the observed hydrothermal values by using ground-truth data in various types of natural/artificial land covers. The simulated results also suggested that the latent heat flux in new water-holding pavement (consisting of porous asphalt and water-holding filler made of steel by-products based on silica compound) has a strong impact on hydrologic cycle and cooling temperature in comparison with the observed heat budget by newly incorporating the effect of water amount on the heat conductivity in the pavement. Furthermore, the model predicted the hydrothermal changes under two types of land cover scenarios to promote evaporation and to reduce air temperature against heat island phenomenon. Finally, we evaluated the relationship between the effect of groundwater use to ameliorate the heat island and the effect of infiltration on the water cycle in the catchment. These procedures to integrate the multi-scaled model simulation with political scenario based on the effective management of water resources as heat sink/source would be very powerful approaches to recovering a sound hydrologic cycle and create thermally-pleasing environments in the megalopolis. Copyright © 2012 John Wiley & Sons, Ltd.
    Print ISSN: 0885-6087
    Electronic ISSN: 1099-1085
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...