ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-10-14
    Description: Human primordial germ cells and mouse neonatal and adult germline stem cells are pluripotent and show similar properties to embryonic stem cells. Here we report the successful establishment of human adult germline stem cells derived from spermatogonial cells of adult human testis. Cellular and molecular characterization of these cells revealed many similarities to human embryonic stem cells, and the germline stem cells produced teratomas after transplantation into immunodeficient mice. The human adult germline stem cells differentiated into various types of somatic cells of all three germ layers when grown under conditions used to induce the differentiation of human embryonic stem cells. We conclude that the generation of human adult germline stem cells from testicular biopsies may provide simple and non-controversial access to individual cell-based therapy without the ethical and immunological problems associated with human embryonic stem cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Conrad, Sabine -- Renninger, Markus -- Hennenlotter, Jorg -- Wiesner, Tina -- Just, Lothar -- Bonin, Michael -- Aicher, Wilhelm -- Buhring, Hans-Jorg -- Mattheus, Ulrich -- Mack, Andreas -- Wagner, Hans-Joachim -- Minger, Stephen -- Matzkies, Matthias -- Reppel, Michael -- Hescheler, Jurgen -- Sievert, Karl-Dietrich -- Stenzl, Arnulf -- Skutella, Thomas -- England -- Nature. 2008 Nov 20;456(7220):344-9. doi: 10.1038/nature07404. Epub 2008 Oct 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Anatomy, Department of Experimental Embryology, Tubingen, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18849962" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Animals ; Biomarkers/metabolism ; Cell Culture Techniques ; Cell Differentiation ; Cell Line ; Cell Lineage ; Cells, Cultured ; Embryonic Stem Cells/cytology/metabolism ; Epigenesis, Genetic ; Gene Expression Profiling ; Humans ; Male ; Mice ; Mice, Nude ; Neoplasm Transplantation ; Pluripotent Stem Cells/*cytology/metabolism ; Spermatogonia/cytology/ultrastructure ; Teratoma/pathology ; Testis/*cytology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-10-08
    Description: Activation of oncogenes by mechanisms other than genetic aberrations such as mutations, translocations, or amplifications is largely undefined. Here we report a novel isoform of the anaplastic lymphoma kinase (ALK) that is expressed in approximately 11% of melanomas and sporadically in other human cancer types, but not in normal tissues. The novel ALK transcript initiates from a de novo alternative transcription initiation (ATI) site in ALK intron 19, and was termed ALK(ATI). In ALK(ATI)-expressing tumours, the ATI site is enriched for H3K4me3 and RNA polymerase II, chromatin marks characteristic of active transcription initiation sites. ALK(ATI) is expressed from both ALK alleles, and no recurrent genetic aberrations are found at the ALK locus, indicating that the transcriptional activation is independent of genetic aberrations at the ALK locus. The ALK(ATI) transcript encodes three proteins with molecular weights of 61.1, 60.8 and 58.7 kilodaltons, consisting primarily of the intracellular tyrosine kinase domain. ALK(ATI) stimulates multiple oncogenic signalling pathways, drives growth-factor-independent cell proliferation in vitro, and promotes tumorigenesis in vivo in mouse models. ALK inhibitors can suppress the kinase activity of ALK(ATI), suggesting that patients with ALK(ATI)-expressing tumours may benefit from ALK inhibitors. Our findings suggest a novel mechanism of oncogene activation in cancer through de novo alternative transcription initiation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wiesner, Thomas -- Lee, William -- Obenauf, Anna C -- Ran, Leili -- Murali, Rajmohan -- Zhang, Qi Fan -- Wong, Elissa W P -- Hu, Wenhuo -- Scott, Sasinya N -- Shah, Ronak H -- Landa, Inigo -- Button, Julia -- Lailler, Nathalie -- Sboner, Andrea -- Gao, Dong -- Murphy, Devan A -- Cao, Zhen -- Shukla, Shipra -- Hollmann, Travis J -- Wang, Lu -- Borsu, Laetitia -- Merghoub, Taha -- Schwartz, Gary K -- Postow, Michael A -- Ariyan, Charlotte E -- Fagin, James A -- Zheng, Deyou -- Ladanyi, Marc -- Busam, Klaus J -- Berger, Michael F -- Chen, Yu -- Chi, Ping -- DP2 CA174499/CA/NCI NIH HHS/ -- DP2CA174499/CA/NCI NIH HHS/ -- K08 CA151660/CA/NCI NIH HHS/ -- K08CA140946/CA/NCI NIH HHS/ -- K08CA151660/CA/NCI NIH HHS/ -- P01 CA129243/CA/NCI NIH HHS/ -- P01CA12943/CA/NCI NIH HHS/ -- P30 CA008748/CA/NCI NIH HHS/ -- P50 CA172012/CA/NCI NIH HHS/ -- P50CA172012/CA/NCI NIH HHS/ -- England -- Nature. 2015 Oct 15;526(7573):453-7. doi: 10.1038/nature15258. Epub 2015 Oct 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York 10065, USA. ; Department of Dermatology, Medical University of Graz, 8010 Graz, Austria. ; Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York 10065, USA. ; Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York 10065, USA. ; Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York 10065, USA. ; Department of Pathology, Memorial Sloan Kettering Cancer Center, New York 10065, USA. ; Marie-Josee and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York 10065, USA. ; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College/New York Presbyterian Hospital, New York 10065, USA. ; Institute for Computational Biomedicine, Weill Cornell Medical College/New York Presbyterian Hospital, New York 10065, USA. ; Institute for Precision Medicine, Weill Cornell Medical College/New York Presbyterian Hospital, New York, USA. ; Immunology Program, Memorial Sloan Kettering Cancer Center 10065, New York, USA. ; Herbert Irving Comprehensive Cancer Center, Columbia University Cancer Center, New York 10032, USA. ; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York 10065, USA. ; Department of Medicine, Weill Cornell Medical College, New York 10065, USA. ; Department of Surgery, Memorial Sloan Kettering Cancer Center, New York 10065, USA. ; Department of Neurology, Albert Einstein College of Medicine, New York 10461, USA. ; Department of Genetics, Albert Einstein College of Medicine, New York 10461, USA. ; Department of Neuroscience, Albert Einstein College of Medicine, New York 10461, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26444240" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-03-26
    Description: Drug resistance invariably limits the clinical efficacy of targeted therapy with kinase inhibitors against cancer. Here we show that targeted therapy with BRAF, ALK or EGFR kinase inhibitors induces a complex network of secreted signals in drug-stressed human and mouse melanoma and human lung adenocarcinoma cells. This therapy-induced secretome stimulates the outgrowth, dissemination and metastasis of drug-resistant cancer cell clones and supports the survival of drug-sensitive cancer cells, contributing to incomplete tumour regression. The tumour-promoting secretome of melanoma cells treated with the kinase inhibitor vemurafenib is driven by downregulation of the transcription factor FRA1. In situ transcriptome analysis of drug-resistant melanoma cells responding to the regressing tumour microenvironment revealed hyperactivation of several signalling pathways, most prominently the AKT pathway. Dual inhibition of RAF and the PI(3)K/AKT/mTOR intracellular signalling pathways blunted the outgrowth of the drug-resistant cell population in BRAF mutant human melanoma, suggesting this combination therapy as a strategy against tumour relapse. Thus, therapeutic inhibition of oncogenic drivers induces vast secretome changes in drug-sensitive cancer cells, paradoxically establishing a tumour microenvironment that supports the expansion of drug-resistant clones, but is susceptible to combination therapy.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4507807/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4507807/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Obenauf, Anna C -- Zou, Yilong -- Ji, Andrew L -- Vanharanta, Sakari -- Shu, Weiping -- Shi, Hubing -- Kong, Xiangju -- Bosenberg, Marcus C -- Wiesner, Thomas -- Rosen, Neal -- Lo, Roger S -- Massague, Joan -- CA129243/CA/NCI NIH HHS/ -- CA163167/CA/NCI NIH HHS/ -- J 3013/Austrian Science Fund FWF/Austria -- MC_UU_12022/7/Medical Research Council/United Kingdom -- P01 CA094060/CA/NCI NIH HHS/ -- P01 CA129243/CA/NCI NIH HHS/ -- P30 CA008748/CA/NCI NIH HHS/ -- R01 CA176111/CA/NCI NIH HHS/ -- U54 CA163167/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- Medical Research Council/United Kingdom -- England -- Nature. 2015 Apr 16;520(7547):368-72. doi: 10.1038/nature14336. Epub 2015 Mar 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA. ; 1] Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA [2] Gerstner Sloan Kettering School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA. ; 1] Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA [2] MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK. ; Division of Dermatology, Department of Medicine and Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California 90095, USA. ; 1] Department of Pathology, Yale University School of Medicine, New Haven, Connecticut 06520, USA [2] Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut 06520, USA. ; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA. ; Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25807485" target="_blank"〉PubMed〈/a〉
    Keywords: Adenocarcinoma/drug therapy/metabolism/pathology/secretion ; Animals ; Cell Line, Tumor ; Cell Movement/drug effects ; Cell Proliferation/drug effects ; Cell Survival/drug effects ; Clone Cells/drug effects/pathology ; *Disease Progression ; Down-Regulation/drug effects ; Drug Resistance, Neoplasm/*drug effects ; Enzyme Activation/drug effects ; Female ; Humans ; Lung Neoplasms/drug therapy/metabolism/pathology/*secretion ; Melanoma/drug therapy/metabolism/pathology/*secretion ; Metabolome/*drug effects ; Mice ; Neoplasm Metastasis/drug therapy/pathology ; Protein Kinase Inhibitors/*pharmacology/*therapeutic use ; Proto-Oncogene Proteins B-raf/antagonists & inhibitors ; Proto-Oncogene Proteins c-akt/metabolism ; Proto-Oncogene Proteins c-fos/deficiency ; Receptor Protein-Tyrosine Kinases/antagonists & inhibitors ; Receptor, Epidermal Growth Factor/antagonists & inhibitors ; Signal Transduction/drug effects ; Tumor Microenvironment/drug effects
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-04-04
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1997-04-15
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-04-20
    Description: Adult neurogenesis is a process by which the brain produces new neurons once development has ceased. Adult hippocampal neurogenesis has been linked to the relational processing of spatial information, a role attributed to the contribution of newborn neurons to long-term potentiation (LTP). However, whether newborn neurons also influence long-term depression (LTD), and how synaptic transmission and plasticity are affected as they incorporate their network, remain to be determined. To address these issues, we took advantage of a genetic model in which a majority of adult-born neurons can be selectively ablated in the dentate gyrus (DG) and, most importantly, in which neurogenesis can be restored on demand. Using electrophysiological recordings, we show that selective reduction of adult-born neurons impairs synaptic transmission at medial perforant pathway synapses onto DG granule cells. Furthermore, LTP and LTD are largely compromised at these synapses, probably as a result of an increased induction threshold. Whereas the deficits in synaptic transmission and plasticity are completely rescued by restoring neurogenesis, these synapses regain their ability to express LTP much faster than their ability to express LTD. These results demonstrate that both LTP and LTD are influenced by adult neurogenesis. They also indicate that as newborn neurons integrate their network, the ability to express bidirectional synaptic plasticity is largely improved at these synapses. These findings establish that adult neurogenesis is an important process for synaptic transmission and bidirectional plasticity in the DG, accounting for its role in efficiently integrating novel incoming information and in forming new memories.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...