ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-04-28
    Description: The Bacillus thuringiensis delta-endotoxins (Bt toxins) are widely used insecticidal proteins in engineered crops that provide agricultural, economic, and environmental benefits. The development of insect resistance to Bt toxins endangers their long-term effectiveness. Here we have developed a phage-assisted continuous evolution selection that rapidly evolves high-affinity protein-protein interactions, and applied this system to evolve variants of the Bt toxin Cry1Ac that bind a cadherin-like receptor from the insect pest Trichoplusia ni (TnCAD) that is not natively bound by wild-type Cry1Ac. The resulting evolved Cry1Ac variants bind TnCAD with high affinity (dissociation constant Kd = 11-41 nM), kill TnCAD-expressing insect cells that are not susceptible to wild-type Cry1Ac, and kill Cry1Ac-resistant T. ni insects up to 335-fold more potently than wild-type Cry1Ac. Our findings establish that the evolution of Bt toxins with novel insect cell receptor affinity can overcome insect Bt toxin resistance and confer lethality approaching that of the wild-type Bt toxin against non-resistant insects.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4865400/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4865400/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Badran, Ahmed H -- Guzov, Victor M -- Huai, Qing -- Kemp, Melissa M -- Vishwanath, Prashanth -- Kain, Wendy -- Nance, Autumn M -- Evdokimov, Artem -- Moshiri, Farhad -- Turner, Keith H -- Wang, Ping -- Malvar, Thomas -- Liu, David R -- R01 EB022376/EB/NIBIB NIH HHS/ -- R01EB022376/EB/NIBIB NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2016 May 5;533(7601):58-63. doi: 10.1038/nature17938. Epub 2016 Apr 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA. ; Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts 02138, USA. ; Monsanto Company, 245 First Street, Suite 200, Cambridge, Massachusetts 02142, USA. ; Department of Entomology, Cornell University, Geneva, New York 14456, USA. ; Monsanto Company, 700 Chesterfield Parkway West, Chesterfield, Missouri 63017, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27120167" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Bacillus thuringiensis/*genetics ; Bacterial Proteins/*genetics/*metabolism ; Bacteriophages/genetics ; Biotechnology ; Cadherins/metabolism ; Cell Death ; Consensus Sequence ; Crops, Agricultural/genetics/metabolism ; Directed Molecular Evolution/*methods ; Endotoxins/*genetics/*metabolism ; Genetic Variation/*genetics ; Hemolysin Proteins/*genetics/*metabolism ; *Insecticide Resistance ; Insecticides/metabolism ; Molecular Sequence Data ; Moths/cytology/*physiology ; Mutagenesis/genetics ; Pest Control, Biological/*methods ; Plants, Genetically Modified ; Protein Binding/genetics ; Protein Stability ; Selection, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
  • 3
    Publication Date: 1998-10-29
    Description: Resistance to the insecticidal proteins produced by the soil bacterium Bacillus thuringiensis (Bt) has been documented in more than a dozen species of insect. Nearly all of these cases have been produced primarily by selection in the laboratory, but one pest, the diamondback moth ( Plutella xylostella ), has evolved resistance in open–field populations. Insect resistance to Bt has immediate and widespread significance because of increasing reliance on Bt toxins in genetically engineered crops and conventional sprays. Furthermore, intense interest in Bt provides an opportunity to examine the extent to which evolutionary pathways to resistance vary among and within species of insect. One mode of resistance to Bt is characterized by more than 500–fold resistance to at least one Cry1A toxin, recessive inheritance, little or no cross–resistance to Cry1C, and reduced binding of at least one Cry1A toxin. Analysis of resistance to Bt in the diamondback moth and two other species of moth suggests that although this particular mode of resistance may be the most common, it is not the only means by which insects can attain resistance to Bt.
    Print ISSN: 0962-8436
    Electronic ISSN: 1471-2970
    Topics: Biology
    Published by The Royal Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...