ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1365-3121
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: The regional stress field in the northern North Sea (offshore western Norway) has been studied through the acquisition and analysis of directions of maximum horizontal compression (s̀H) as extracted from borehole breakouts and from earthquake focal mechanism solutions.The results indicate that the regional stress field is dominated by NW-SE compression, with good consistency between shallow borehole breakouts (2–5 km depth) and deeper earthquakes (10–25 km depth). The broad spatial consistency in stress direction indicates that the main stress field is related to factors of primarily plate tectonic origin, and the results are in good agreement with the western Europe trend found in earlier investigations.The Tampen Spur region in the northern North Sea has been subjected to particularly complex deformation, with two dominating fault directions trending NW-SE and NE-SW. From Tampen Spur in the west to the Sogn graben in the east an anomalous stress field is indicated, with NE-SW oriented maximum horizontal compressions. This anomaly is clearly seen both in the borehole breakout data and in the earthquake data. Possible sources for this anomaly are discussed, and include postglacial uplift and/or lateral variations in the physical properties of the crust.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Polar research 8 (1990), S. 0 
    ISSN: 1751-8369
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geography , Geosciences
    Notes: As a part of the Norwegian Antarctic Research Expedition 1984/85, geological mapping was performed in Gjelsvikfjella and western Mühlig-Hofmannfjella, Dronning Maud Land. The northern part of Gjelsvikfjella is dominated by the Jutulsessen metasupracrustals which have been intruded by a major gabbroic body and several generations of dykes. To the south the metasupracrustals gradually transform into the Risemedet migmatites. In western Mühlig-Hofmannfjella the bedrock is dominated by the large Svarthamaren Charnockite batholith. The batholith is bordered by the Snøtoa metamorphic complex outcropping to the south and west in Mühlig-Hofmannfjella and it is characterized by a high content of partly assimilated country rock inclusions. Mineral paragenesis and geothermometry/geobarometry suggest a two-stage tectonothermal-igneous history with an initial intermediate pressure, upper amphibolite to granulite facies metamorphism followed by high temperature transformations related to the charnockite intrusion. The age of the initial tectonothermal event is probably about 1,100 Ma. Geochronological work in the present study (Rb/Sr whole rock) gave an age of 500 ± 24 Ma for the Svarthamaren Charnockite, interpreted to record the age of crystallization. Late brittle faulting and undeformed dolerite dykes outcropping in Jutulsessen are believed to be related to Mesozoic crustal stretching in the Jutulstraumen-Pencksøkket Rift Zone to the west.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1437-3262
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Description / Table of Contents: Abstract The Midgard Field offshore mid-Norway is a gas-condensate accumulation with a thin oil leg reservoired in Early and Middle Jurassic sandstones. There are two potential source rocks in the area; the Late Jurassic Spekk Formation is a marine shale with type II kerogen and a rich potential for oil, and the Åre Formation of Early Jurassic age which is a thick coal-bearing sequence with type III kerogen and potential mainly for gas. Geochemical analyses indicate that both the condensate and the oil leg are sourced mainly from the coal-bearing Åre Formation. Any contribution from the Spekk Formation appears to be of minor importance. Computer simulation of hydrocarbon generation in the drainage area for the Midgard Field indicates that huge volumes are formed, and confirms that hydrocarbon generation from the Åre Formation is volumetrically far more important than from the Spekk Formation. The simulation results also exclude any contribution to the reservoired gas from the Spekk Formation.
    Abstract: Résumé Le champ off-shore de Midgard (Norvège moyenne) est une accumulation de gaz condensé accompagnée d'un mince corps d'huile, accumulation renfermée dans des grès d'âge jurassique inférieur et moyen. Il existe dans le secteur deux sources possibles: la formation de Spekk (shale marins du Jurassique tardif, à kérogène de type II, possédant un riche potentiel en huile) et la formation d'Åre (série épaisse jurassique inférieure, à couches de charbon, à kérogène de type III et potentiel essentiellement en gaz). Les analyses géochimiques montrent que le gaz condensé et l'huile ont tous deux comme origine la formation charbonneuse de Åre. La formation de Spekk ne semble être intervenue que de manière subordonnée. Une simulation par ordinateur de la genèse de l'hydrocarbure dans l'aire d'alimentation du champ de Midgard fait apparaître que des volumes importants ont été formés et confirme la large prépondérance de la formation de Åre parmi les roches-mères. De plus, cette simulation exclut toute expèce de contribution de la formation de Spekk dans la genèse du gaz.
    Notes: Zusammenfassung Das Midgard Feld vor der Küste Mittelnorwegens ist eine Gas-Kondensat-Akkumulation mit einem nur geringen Ölanteil innerhalb unter- und mitteljurassischer Sandsteine. In diesem Gebiet gibt es zwei mögliche Muttergesteine: Einmal die oberjurassische Spekk-Formation, bei der es sich um einen marinen Schiefer mit Typ II Kerogen handelt und die ein hohes Ölpotential darstellt. Zum anderen gibt es die unterjurassische Åre-Formation, eine mächtige Kohle-führende Folge mit Typ III Kerogen und ein möglicher Gaslieferant. Geochemische Analysen deuten darauf hin, daß sowohl das Gas-Kondensat als auch das Öl des Midgard Feldes auf diese Kohle-führende Åre-Formation zurückzuführen sind. Jede Zufuhr aus der Spekk-Formation scheint von geringer Bedeutung zu sein. Eine durch Computersimulation rekonstruierte Kohlenwasserstofferzeugung im Einzugsgebiet des Midgard Feldes spricht für eine hohe Bildungsrate und bestätigt die Annahme, daß die Kohlenwasserstoff-produktion der Spekk-Formation gegenüber der Åre-Formation zu vernachlässigen ist. Die Simulation ergab ferner, daß keinerlei Gas von der Spekk-Formation dem Reservoir zugeführt wurde.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1995-01-01
    Print ISSN: 0954-4879
    Electronic ISSN: 1365-3121
    Topics: Geosciences
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-12-16
    Description: Transform-margin development around the Arctic Ocean is a predictable geometric outcome of multi-stage spreading of a small, confined ocean under radically changing plate vectors. Recognition of several transform-margin stages in the development of the Arctic Ocean enables predictions to be made regarding tectonic styles and petroleum systems. The De Geer margin, connecting the Eurasia Basin (the younger Arctic Ocean) and the NE Atlantic during the Cenozoic, is the best known example. It is dextral, multi-component, features transtension and transpression, is implicated in microcontinent release, and thus bears close comparison with the Equatorial Shear Zone. In the older Arctic Ocean, the Amerasia Basin, Early Cretaceous counterclockwise rotation around a pole in the Canadian Mackenzie Delta was accommodated by a terminal transform. We argue on geometric grounds that this dislocation may have occurred at the Canada Basin margin rather than along the more distal Lomonosov Ridge, and review evidence that elements of the old transform margin were detached by the Makarov–Podvodnikov opening and accommodated within the Alpha–Mendeleev Ridge. More controversial is the proposal of transform along the Laptev–East Siberian margin. We regard an element of transform motion as the best solution to accommodating Eurasia and Makarov–Podvodnikov Basin opening, and have incorporated it into a three-stage plate kinematic model for Cretaceous–Cenozoic Arctic Ocean opening, involving the Canada Basin rotational opening at 125–80 Ma, the Makarov–Povodnikov Basin opening at 80–60 Ma normal to the previous motion and a Eurasia Basin stage from 55 Ma to present. We suggest that all three opening phases were accompanied by transform motion, with the right-lateral sense being dominant. The limited data along the Laptev–East Siberian margin are consistent with transform-margin geometry and kinematic indicators, and these ideas will be tested as more data become available over less explored parts of the Arctic, such as the Laptev–East Siberia–Chukchi margin.
    Print ISSN: 0305-8719
    Electronic ISSN: 2041-4927
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-12-01
    Description: Predicting the lateral distribution of petroleum play elements (reservoirs, source rocks, and seals) requires basic understanding of regional basin evolution and depositional history. In remote areas where little data are available or where the basins have undergone episodes of tectonic deformation, this understanding relies on integrated analysis of the plate tectonic framework and the resulting paleogeography. The Arctic has experienced several episodes of tectonic deformation, which fundamentally changed the basin configuration and patterns of sediment routing. Here, we present a set of paleogeographic maps highlighting these changes during the Triassic–Paleogene. In the Triassic, the Arctic was characterized by a central restricted basin, which predominantly received clastic input from the Polar Urals and Arctic Canada. The Alaskan and Siberian passive margins received clastics from continent-scale drainage systems extending into the North American craton and the central Asian fold belt, respectively. In the Jurassic, the region was dominated by rifting as the central Arctic landmass rifted away from Laurentia. In the Early Cretaceous, the northern margin of the Barents Sea underwent regional uplift resulting in new provenance areas shedding sediments southward. Compression along the Pacific margin formed continuous topography and high sediment input to the Canada Basin during the Late Cretaceous. Regression in the Canada Basin continued in the Paleogene when major rift–tip deltas formed. This overview of Arctic paleogeography demonstrates the complexity of this overall data-poor area and shows the need for integrated, regional models to understand sediment routing and stratigraphic development in such areas.
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1995-05-01
    Print ISSN: 1354-0793
    Electronic ISSN: 2041-496X
    Topics: Chemistry and Pharmacology , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-12-14
    Print ISSN: 0305-8719
    Electronic ISSN: 2041-4927
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1997-05-01
    Print ISSN: 0264-8172
    Electronic ISSN: 1873-4073
    Topics: Geosciences
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1990-12-01
    Print ISSN: 0800-0395
    Electronic ISSN: 1751-8369
    Topics: Geography , Geosciences
    Published by Taylor & Francis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...