ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Publication Date: 2016-08-27
    Description: The long-wavelength gravity field contains information about processes in the sublithospheric mantle. As satellite-derived gravity models now provide the long to medium-wavelength gravity field at unprecedented accuracy, techniques used to process gravity data need to be updated. We show that when determining these long-wavelengths, the treatment of topographic-isostatic effect (TIE) and isostatic effects (IE) is a likely source of error. We constructed a global isostatic model and calculated global TIE and IE. These calculations were done for ground stations as well as stations at satellite height. We considered both gravity and gravity gradients. Using these results, we determined how much of the gravity signal comes from distant sources. We find that a significant long-wavelength bias is introduced if far-field effects on the topographic effect are neglected. However, due to isostatic compensation far-field effects of the topographic effect are to a large degree compensated by the far-field IE. This means that far-field effects can be reduced effectively by always considering topographic masses together with their compensating isostatic masses. We show that to correctly represent the ultra-long wavelengths, a global background model should be used. This is demonstrated both globally and for a continental-scale case area in North America. In the case of regional modelling, where the ultra-long wavelengths are not of prime importance, gravity gradients can be used to help minimize correction errors caused by far-field effects.
    Keywords: Gravity, Geodesy and Tides
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...