ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-27
    Description: A fiber-optic current sensor based on the Faraday Effect is developed for aircraft installations. It can measure total lightning current amplitudes and waveforms, including continuing current. Additional benefits include being small, lightweight, non-conducting, safe from electromagnetic interference, and free of hysteresis and saturation. The Faraday Effect causes light polarization to rotate in presence of magnetic field in the direction of light propagation. Measuring the total induced light polarization change yields the total current enclosed. The system operates at 1310nm laser wavelength and can measure approximately 300 A - 300 kA, a 60 dB range. A reflective polarimetric scheme is used, where the light polarization change is measured after a round-trip propagation through the fiber. A two-detector setup measures the two orthogonal polarizations for noise subtraction and improved dynamic range. The current response curve is non-linear and requires a simple spline-fit correction. Effects of high current were achieved in laboratory using combinations of multiple fiber and wire loops. Good result comparisons against reference sensors were achieved up to 300 kA. Accurate measurements on a simulated aircraft fuselage and an internal structure illustrate capabilities that maybe difficult with traditional sensors. Also tested at a commercial lightning test facility from 20 kA to 200 kA, accuracy within 3-10% was achieved even with non-optimum setups.
    Keywords: Air Transportation and Safety
    Type: NF1676L-14825 , 2013 International Conference on Lightning and Static Electricity (ICOLSE); 18-20 Sept. 2013; Seattle, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-20
    Description: The National Aeronautics and Space Administrations Unmanned Aircraft System (UAS) Traffic Management (UTM) project is researching prototype technologies needed to ensure safe integration of UAS operations into the National Airspace System (NAS). Within the UTM Concept of Operations, UAS would be equipped with on-board Sense and Avoid (SAA) technology to continually monitor for manned and unmanned aircraft in its vicinity while operating beyond visual line of sight in uncontrolled airspace. To support this effort, a candidate commercially available 24.5 GHz Doppler radar was selected and evaluated to determine if the technology could reliably support minimum requirements for SAA applications of small UAS (sUAS). Indoor ground tests were conducted inside the NASA Langley Research Centers Experimental Test Range (ETR) from a stationary platform to evaluate the Doppler radar performance characteristics and gain operational proficiency before the radar was authorized to transmit outdoors. A high speed linear rail system was developed for the radar evaluation and was shown to be an effective method to generate Doppler radar targets of known radar cross section. The accuracy of the range and velocity reported by the radar was shown to be dependent on the Kalman filter state variance parameter settings. Antenna measurements were collected with the radar installed both on and off a sUAS to quantify the relative antenna gain, beam width and side lobe levels of the radars Metamaterial Electronically Scanning Array (MESA) antennas at boresight and extreme field of view pointing vectors. The relative antenna gain measured 2.6 dB lower at extreme field view angles compared to the boresight radiation pattern.
    Keywords: Aircraft Design, Testing and Performance; Aircraft Communications and Navigation
    Type: NASA/TM–2019–220280 , L-21021 , NF1676L-32969
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-27
    Description: The capability to assess the current or future state of the health of an aircraft to improve safety, availability, and reliability while reducing maintenance costs has been a continuous goal for decades. Many companies, commercial entities, and academic institutions have become interested in Integrated Vehicle Health Management (IVHM) and a growing effort of research into "smart" vehicle sensing systems has emerged. Methods to detect damage to aircraft materials and structures have historically relied on visual inspection during pre-flight or post-flight operations by flight and ground crews. More quantitative non-destructive investigations with various instruments and sensors have traditionally been performed when the aircraft is out of operational service during major scheduled maintenance. Through the use of reliable sensors coupled with data monitoring, data mining, and data analysis techniques, the health state of a vehicle can be detected in-situ. NASA Langley Research Center (LaRC) is developing a composite aircraft skin damage detection method and system based on open circuit SansEC (Sans Electric Connection) sensor technology. Composite materials are increasingly used in modern aircraft for reducing weight, improving fuel efficiency, and enhancing the overall design, performance, and manufacturability of airborne vehicles. Materials such as fiberglass reinforced composites (FRC) and carbon-fiber-reinforced polymers (CFRP) are being used to great advantage in airframes, wings, engine nacelles, turbine blades, fairings, fuselage structures, empennage structures, control surfaces and aircraft skins. SansEC sensor technology is a new technical framework for designing, powering, and interrogating sensors to detect various types of damage in composite materials. The source cause of the in-service damage (lightning strike, impact damage, material fatigue, etc.) to the aircraft composite is not relevant. The sensor will detect damage independent of the cause. Damage in composite material is generally associated with a localized change in material permittivity and/or conductivity. These changes are sensed using SansEC. The unique electrical signatures (amplitude, frequency, bandwidth, and phase) are used for damage detection and diagnosis. An operational system and method would incorporate a SansEC sensor array on select areas of the aircraft exterior surfaces to form a "Smart skin" sensing surface. In this paper a new method and system for aircraft in-situ damage detection and diagnosis is presented. Experimental test results on seeded fault damage coupons and computational modeling simulation results are presented. NASA LaRC has demonstrated with individual sensors that SansEC sensors can be effectively used for in-situ composite damage detection of delamination, voids, fractures, and rips. Keywords: Damage Detection, Composites, Integrated Vehicle Health Monitoring (IVHM), Aviation Safety, SansEC Sensors
    Keywords: Air Transportation and Safety
    Type: SEA13-59 , NF1676L-16011 , 2013 ICOLSE International Conference on Lightning and Static Electricity; 18-20 Sept. 2013; Seattle, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: This paper outlines a NASA project plan for demonstrating a prototype lightning strike measurement system that is suitable for installation onto research aircraft that already operate in thunderstorms. This work builds upon past data from the NASA F106, FAA CV-580, and Transall C-180 flight projects, SAE ARP5412, and the European ILDAS Program. The primary focus is to capture airframe current waveforms during attachment, but may also consider pre and post-attachment current, electric field, and radiated field phenomena. New sensor technologies are being developed for this system, including a fiber-optic Faraday polarization sensor that measures lightning current waveforms from DC to over several Megahertz, and has dynamic range covering hundreds-of-volts to tens-of-thousands-of-volts. A study of the electromagnetic emission spectrum of lightning (including radio wave, microwave, optical, X-Rays and Gamma-Rays), and a compilation of aircraft transfer-function data (including composite aircraft) are included, to aid in the development of other new lightning environment sensors, their placement on-board research aircraft, and triggering of the onboard instrumentation system. The instrumentation system will leverage recent advances in high-speed, high dynamic range, deep memory data acquisition equipment, and fiber-optic interconnect.
    Keywords: Meteorology and Climatology
    Type: NF1676L-13090 , 2011 ICOLSE - International Conference on Lightning and Static Electricity; Sep 06, 2011 - Sep 08, 2011; Oxford; United Kingdom
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: This paper describes the preliminary effort to apply computational design tools to aid in the development of an electromagnetic SansEC resonant sensor composite materials damage detection system. The computational methods and models employed on this research problem will evolve in complexity over time and will lead to the development of new computational methods and experimental sensor systems that demonstrate the capability to detect, diagnose, and monitor the damage of composite materials and structures on aerospace vehicles.
    Keywords: Electronics and Electrical Engineering
    Type: NF1676L-11622 , 27th International Review of Progress in Applied Computational Electromagnetics; Mar 27, 2011 - Mar 31, 2011; Williamsburg, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: An electric current sensor based on Faraday rotation effect in optical fiber was developed for measuring aircraft lightning current. Compared to traditional sensors, the design has many advantages including the ability to measure total current and to conform to structure geometries. The sensor is also small, light weight, non-conducting, safe from interference, and free of hysteresis and saturation. Potential applications include characterization of lightning current waveforms, parameters and paths, and providing environmental data for aircraft certifications. In an optical fiber as the sensing medium, light polarization rotates when exposed to a magnetic field in the direction of light propagation. By forming closed fiber loops around a conductor and applying Ampere s law, measuring the total light rotation yields the enclosed current. A reflective polarimetric scheme is used, where polarization change is measured after the polarized light travels round-trip through the sensing fiber. The sensor system was evaluated measuring rocket-triggered lightning over the 2011 summer. Early results compared very well against a reference current shunt resistor, demonstrating the sensor's accuracy and feasibility in a lightning environment. While later comparisons show gradually increasing amplitude deviations for an undetermined cause, the overall waveforms still compared very well.
    Keywords: Air Transportation and Safety
    Type: NF1676L-13959 , 4th AIAA Atmospheric and Space Environments Conference; Jun 25, 2012 - Jun 28, 2012; New Orleans, LA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: This viewgraph presentation describes various lightning strike and electromagnetic sensing mitigation technologies to minimize flight safety risks.
    Keywords: Electronics and Electrical Engineering
    Type: NF1676L-11892 , Atmospheric Hazard Safety Mitigation Review Meeting; Nov 18, 2010; Hampton, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-19
    Description: The UAS in the NAS project Flight Test 6 (FT6) campaign scheduled for FY19Q3 will evaluate the proficiency of a Honeywell DAPA-Lite Radar installed on a Tiger Shark unmanned vehicle to detect the presence of air traffic operating in its vicinity. A 3D printed radome will be manufactured for the front of the Tiger Shark to enclose the radar during FT6 operations. The DAPA-Lite radar operates in the 24.5 GHz frequency band. Material properties of 3D printer filaments are widely available for the mechanical and thermal properties, but limited knowledge exists on the electrical properties for radome applications and no data was found to correspond at the 24.5 Ghz frequency band. To minimize project risk associated with the radome performance, transmissivity and reflectivity measurements were conducted on two candidate 3D printed dielectric material filaments (Ultem 1010 Natural and Ultem 9085 Black) and two thicknesses of a solid laminate (Ultem 1000) material. The 3D printed Ultem coupons were tested shortly after being printed and again 8 months later to examine ageing effects of the open cell structure. This paper presents the transmissivity and reflectivity measurement results collected on the Ultem coupons and concludes the 3D printed 1010 Natural coupon is a suitable candidate filament for radome applications at 24.5 GHz. The design of the structures open cell matrix has a significant impact on the materials surface reflectivity.
    Keywords: Aircraft Design, Testing and Performance
    Type: NF1676L-33377 , NASA/TM-2019-220287 , L-21031
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-08-24
    Description: A multi-layer wireless sensor construct is provided. The construct includes a first dielectric layer adapted to be attached to a portion of a first surface of an electrically-conductive material. A layer of mu metal is provided on the first dielectric layer. A second dielectric layer is provided on the layer of mu metal. An electrical conductor is provided on the second dielectric layer wherein the second dielectric layer separates the electrical conductor from the layer of mu metal. The electrical conductor has first and second ends and is shaped to form an unconnected open-circuit that, in the presence of a time-varying magnetic field, resonates to generate a harmonic magnetic field response having a frequency, amplitude and bandwidth.
    Keywords: Electronics and Electrical Engineering
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-08-27
    Description: Lightning transients were pin-injected into metal-oxide-semiconductor field-effect transistors (MOSFETs) to induce fault modes. This report documents the test process and results, and provides a basis for subsequent lightning tests. MOSFETs may be present in DC-DC power supplies and electromechanical actuator circuits that may be used on board aircraft. Results show that unprotected MOSFET Gates are susceptible to failure, even when installed in systems in well-shielded and partial-shielded locations. MOSFET Drains and Sources are significantly less susceptible. Device impedance decreased (current increased) after every failure. Such a failure mode may lead to cascading failures, as the damaged MOSFET may allow excessive current to flow through other circuitry. Preliminary assessments on a MOSFET subjected to 20-stroke pin-injection testing demonstrate that Breakdown Voltage, Leakage Current and Threshold Voltage characteristics show damage, while the device continues to meet manufacturer performance specifications. The purpose of this research is to develop validated tools, technologies, and techniques for automated detection, diagnosis and prognosis that enable mitigation of adverse events during flight, such as from lightning transients; and to understand the interplay between lightning-induced surges and aging (i.e. humidity, vibration thermal stress, etc.) on component degradation.
    Keywords: Electronics and Electrical Engineering
    Type: NASA/TM-2009-215794 , L-19713 , LF99-9139
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...