ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 85 (2002), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The processing of stepwise graded Si3N4/SiC ceramics by pressureless co-sintering is described. Here, SiC (high elastic modulus, high thermal expansion coefficient) forms the substrate and Si3N4 (low elastic modulus, low thermal expansion coefficient) forms the top contact surface, with a stepwise gradient in composition existing between the two over a depth of ∼1.7 mm. The resulting Si3N4 contact surface is fine-grained and dense, and it contains only 2 vol% yttrium aluminum garnet (YAG) additive. This graded ceramic shows resistance to cone-crack formation under Hertzian indentation, which is attributed to a combined effect of the elastic-modulus gradient and the compressive thermal-expansion-mismatch residual stress present at the contact surface. The presence of the residual stress is corroborated and quantified using Vickers indentation tests. The graded ceramic also possesses wear properties that are significantly improved compared with dense, monolithic Si3N4 containing 2 vol% YAG additive. The improved wear resistance is attributed solely to the large compressive stress present at the contact surface. A modification of the simple wear model by Lawn and co-workers is used to rationalize the wear results. Results from this work clearly show that the introduction of surface compressive residual stresses can significantly improve the wear resistance of polycrystalline ceramics, which may have important implications for the design of contact-damage-resistant ceramics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 82 (1999), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: A method to form thin ceramic bodies is described in which curvature in the component is introduced at high temperature without the application of an external stress. The internal stress that drives the deformation results as a consequence of cation penetration from a coating into a substrate material. This technique has been developed for alumina substrates that are coated with layers of chromia, magnesia, titania, calcia, silica, and iron oxide. Normalized deflections of segment height to sample thickness (A/t) of up to 10 were observed for samples with beam geometry and A/t values of 4 were obtained for disks. The magnitude of the deflection is dependent on the amount of dopant that is applied, as well as the soak temperature and time. An analytical model has been developed to describe the magnitude of the deflections. The best agreement with the experimental data is obtained when the deflections are treated as occurring at high temperature, where the resistance to bending from stiffness effects is reduced. This forming method is shown to be suitable to produce shapes of moderate complexity, such as ceramic wave springs.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 81 (1998), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Hertzian (spherical) indentation experiments were carried out in a graded alumina-glass composite whose Young's modulus increased with depth beneath the indented surface. An in situprocessing method involving impregnation of a dense, fine-grained alumina by an aluminosilicate glass was employed to fabricate such a composite. With this technique, a monotonic, unidirectional variation in Young's modulus of as much as 50% was introduced over a distance of approximately 2 mm, while keeping the coefficient of thermal expansion and the Poisson ratio for the glass and the alumina nearly the same. The macroscopically graded, elastic composite so produced with nearly full density has essentially no macroscopic, long-range residual stresses following processing. The unidirectional variation in Young's modulus under the indenter is shown to fully suppress the formation of Hertzian cone cracks. Without these elastic-modulus gradients, cone-crack formation was observed in bulk glass and alumina. Finite-element analyses of spherical indentation on elastically graded substrates were also performed to develop a quantitative understanding of the experimental trends. It is reasoned that the present innovations, involving functionally graded surfaces and their in situprocessing, provide new possibilities for enhancing certain contact-damage resistance characteristics in various ceramic materials for a broad range of engineering applications. Furthermore, this contact-damage-resistance phenomenon in functionally graded ceramics is elastic in nature, and is, therefore, likely to be immune to mechanical fatigue within the elastic limit.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 81 (1998), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The processing and the thermomechanical characteristics of zirconia-toughened alumina (ZTA) ceramic multilayers, with through-thickness gradients in the concentrations of the tetragonal and monoclinic zirconia phases, are studied both theoretically and experimentally. Analytical solutions for the evolution of thermal strains, internal stresses, and the overall curvature changes in response to various temperatures were derived using known plate theory formulations. Compositionally graded multilayer stacks and complex shapes of ZTA ceramics were fabricated by three-dimensional printing (3DP). The relative fractions of the tetragonal to monoclinic ZrO2 phases were varied in a prescribed fashion. Phase transformation of ZrO2 in ZTA during cooling from the sintering temperature was controlled by doping different amounts of Y2O3 through the thickness of the ZTA multilayer plate. The local content of monoclinic ZrO2 through the thickness was characterized by X-ray diffraction analysis. The microstructure, some basic mechanical properties, and thermal expansion behavior of the 3DP ZTA system were also characterized. Thermally induced curvature of the ZTA multilayer plate was measured, and the experimental results were compared with the predictions based on the analytical solutions. Symmetric ZTA multilayers with surface compression were also prepared by 3DP and tested for flexural strength. Results showed a significant increase in strength from the monolithic specimens to the compositionally controlled ones. Results from the compression tests of notched ZTA blocks demonstrated the role of m-ZTA shield zones in enhancing the load-bearing characteristics. This study also demonstrated the possibility that commonly available computational tools can be used to design and construct complex shapes with compositional variation to enhance and control mechanical properties.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 411 (2001), S. 656-656 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Nanoindentation is the penetration of a surface to nanometre depths using an indenting device. It can be simulated using the Bragg bubble-raft model, in which a close-packed array of soap bubbles corresponds to the equilibrium positions of atoms in a crystalline solid. Here we show that ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    [s.l.] : Macmillian Magazines Ltd.
    Nature 418 (2002), S. 307-310 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Nanometre-scale contact experiments and simulations demonstrate the potential to probe incipient plasticity—the onset of permanent deformation—in crystals. Such studies also point to the need for an understanding of the mechanisms governing defect nucleation in a broad range of ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-06-27
    Description: Red blood cells (RBCs) can be cleared from circulation when alterations in their size, shape, and deformability are detected. This function is modulated by the spleen-specific structure of the interendothelial slit (IES). Here, we present a unique physiological framework for development of prognostic markers in RBC diseases by quantifying biophysical limits for RBCs to pass through the IES, using computational simulations based on dissipative particle dynamics. The results show that the spleen selects RBCs for continued circulation based on their geometry, consistent with prior in vivo observations. A companion analysis provides critical bounds relating surface area and volume for healthy RBCs beyond which the RBCs fail the “physical fitness test” to pass through the IES, supporting independent experiments. Our results suggest that the spleen plays an important role in determining distributions of size and shape of healthy RBCs. Because mechanical retention of infected RBC impacts malaria pathogenesis, we studied key biophysical parameters for RBCs infected with Plasmodium falciparum as they cross the IES. In agreement with experimental results, surface area loss of an infected RBC is found to be a more important determinant of splenic retention than its membrane stiffness. The simulations provide insights into the effects of pressure gradient across the IES on RBC retention. By providing quantitative biophysical limits for RBCs to pass through the IES, the narrowest circulatory bottleneck in the spleen, our results offer a broad approach for developing quantitative markers for diseases such as hereditary spherocytosis, thalassemia, and malaria.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-01-20
    Description: We developed a microfluidics-based model to quantify cell-level processes modulating the pathophysiology of sickle cell disease (SCD). This in vitro model enabled quantitative investigations of the kinetics of cell sickling, unsickling, and cell rheology. We created short-term and long-term hypoxic conditions to simulate normal and retarded transit scenarios in microvasculature. Using blood samples from 25 SCD patients with sickle hemoglobin (HbS) levels varying from 64 to 90.1%, we investigated how cell biophysical alterations during blood flow correlated with hematological parameters, HbS level, and hydroxyurea (HU) therapy. From these measurements, we identified two severe cases of SCD that were also independently validated as severe from a genotype-based disease severity classification. These results point to the potential of this method as a diagnostic indicator of disease severity. In addition, we investigated the role of cell density in the kinetics of cell sickling. We observed an effect of HU therapy mainly in relatively dense cell populations, and that the sickled fraction increased with cell density. These results lend support to the possibility that the microfluidic platform developed here offers a unique and quantitative approach to assess the kinetic, rheological, and hematological factors involved in vasoocclusive events associated with SCD and to develop alternative diagnostic tools for disease severity to supplement other methods. Such insights may also lead to a better understanding of the pathogenic basis and mechanism of drug response in SCD.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-08-10
    Description: Hydroxyurea (HU) has been used clinically to reduce the frequency of painful crisis and the need for blood transfusion in sickle cell disease (SCD) patients. However, the mechanisms underlying such beneficial effects of HU treatment are still not fully understood. Studies have indicated a weak correlation between clinical outcome and molecular markers, and the scientific quest to develop companion biophysical markers have mostly targeted studies of blood properties under hypoxia. Using a common-path interferometric technique, we measure biomechanical and morphological properties of individual red blood cells in SCD patients as a function of cell density, and investigate the correlation of these biophysical properties with drug intake as well as other clinically measured parameters. Our results show that patient-specific HU effects on the cellular biophysical properties are detectable at normoxia, and that these properties are strongly correlated with the clinically measured mean cellular volume rather than fetal hemoglobin level.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-11-19
    Description: Morphogenesis is a phenomenon by which a wide variety of functional organs are formed in biological systems. In plants, morphogenesis is primarily driven by differential growth of tissues. Much effort has been devoted to identifying the role of genetic and biomolecular pathways in regulating cell division and cell expansion and in influencing shape formation in plant organs. However, general principles dictating how differential growth controls the formation of complex 3D shapes in plant leaves and flower petals remain largely unknown. Through quantitative measurements on live plant organs and detailed finite-element simulations, we show how the morphology of a growing leaf is determined by both the maximum value and the spatial distribution of growth strain. With this understanding, we develop a broad scientific framework for a morphological phase diagram that is capable of rationalizing four configurations commonly found in plant organs: twisting, helical twisting, saddle bending, and edge waving. We demonstrate the robustness of these findings and analyses by recourse to synthetic reproduction of all four configurations using controlled polymerization of a hydrogel. Our study points to potential approaches to innovative geometrical design and actuation in such applications as building architecture, soft robotics and flexible electronics.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...