ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-07-19
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉This study addresses the evolution of global tidal dynamics since the Last Glacial Maximum focusing on the extraction of tidal levels that are vital for the interpretation of geologic sea‐level markers. For this purpose, we employ a truly‐global barotropic ocean tide model which considers the non‐local effect of Self‐Attraction and Loading. A comparison to a global tide gauge data set for modern conditions yields agreement levels of 65%–70%. As the chosen model is data‐unconstrained, and the considered dissipation mechanisms are well understood, it does not have to be re‐tuned for altered paleoceanographic conditions. In agreement with prior studies, we find that changes in bathymetry during glaciation and deglaciation do exert critical control over the modeling results with minor impact by ocean stratification and sea ice friction. Simulations of 4 major partial tides are repeated in time steps of 0.5–1 ka and augmented by 4 additional partial tides estimated via linear admittance. These are then used to derive time series from which the tidal levels are determined and provided as a global data set conforming to the HOLSEA format. The modeling results indicate a strengthened tidal resonance by M〈sub〉2〈/sub〉, but also by O〈sub〉1〈/sub〉, under glacial conditions, in accordance with prior studies. Especially, a number of prominent changes in local resonance conditions are identified, that impact the tidal levels up to several meters difference. Among other regions, resonant features are predicted for the North Atlantic, the South China Sea, and the Arctic Ocean.〈/p〉
    Description: Plain Language Summary: We discuss changes in ocean tides during the last 21,000 years. This time marks the Last Glacial Maximum when large parts of the Earth's surface were covered by ice and the sea level was more than 100 m lower than today. Such a low sea level means that many regions of the Earth became land and the ocean's depth changed markedly. The distribution of land and water dominates changes in the tidal levels like the spring or neap tide. With a tidal computer model recently developed by our group, we determine these tidal levels for different times steps from 21,000 years to today. Tidal levels are important for geologists who want to understand former sea level changes with samples found at ancient shorelines. As many of such samples were deposited at a specific tidal level, our modeled information will help them to relate their height to the mean sea‐level. Of course, our model is not the only one that can estimate such changes, but we discuss the advantages of our recent development over previous tools available.〈/p〉
    Description: Key Points: Evolution of four major partial tides from Last Glacial Maximum until present times.〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉Validation of the employed ocean tide model with present‐day tide gauge data and dissipation rates.〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉Diligent derivation of global tidal levels for the interpretation of sea level indexpoints.〈/p〉〈/list-item〉 〈/list〉 〈/p〉
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Keywords: ddc:551.46 ; ocean tide modeling ; tidal dissipation ; tidal levels ; indicative range ; sea level index points ; numerical modeling
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-05-01
    Print ISSN: 2169-9275
    Electronic ISSN: 2169-9291
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-07
    Description: This study addresses the evolution of global tidal dynamics since the Last Glacial Maximum focusing on the extraction of tidal levels that are vital for the interpretation of geologic sea-level markers. For this purpose, we employ a truly-global barotropic ocean tide model which considers the non-local effect of Self-Attraction and Loading. A comparison to a global tide gauge data set for modern conditions yields agreement levels of 65%–70%. As the chosen model is data-unconstrained, and the considered dissipation mechanisms are well understood, it does not have to be re-tuned for altered paleoceanographic conditions. In agreement with prior studies, we find that changes in bathymetry during glaciation and deglaciation do exert critical control over the modeling results with minor impact by ocean stratification and sea ice friction. Simulations of 4 major partial tides are repeated in time steps of 0.5–1 ka and augmented by 4 additional partial tides estimated via linear admittance. These are then used to derive time series from which the tidal levels are determined and provided as a global data set conforming to the HOLSEA format. The modeling results indicate a strengthened tidal resonance by M2, but also by O1, under glacial conditions, in accordance with prior studies. Especially, a number of prominent changes in local resonance conditions are identified, that impact the tidal levels up to several meters difference. Among other regions, resonant features are predicted for the North Atlantic, the South China Sea, and the Arctic Ocean. Key Points Evolution of four major partial tides from Last Glacial Maximum until present times Validation of the employed ocean tide model with present-day tide gauge data and dissipation rates Diligent derivation of global tidal levels for the interpretation of sea level indexpoints
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-06-14
    Description: The recently upgraded barotropic tidal model TiME is employed to study the influence of fundamental tidal processes, the chosen model resolution, and the bathymetric map on the achievable model accuracy, exemplary for the M2 tide. Additionally, the newly introduced pole-rotation scheme allows to estimate the model’s inherent precision (open ocean rms: 0.90 cm) and enables studies of the Arctic domain without numerical deviations originating from pole cap handling. We find that the smallest open ocean rms with respect to the FES14-atlas (3.39 cm) is obtained when tidal dissipation is carried out to similar parts by quadratic bottom friction, wave drag, and parametrized eddy-viscosity. This setting proves versatile to obtaining high accuracy values for a diverse ensemble of additional partial tides. Using the preferred model settings, we show that for certain minor tides it is possible to obtain solutions that are more accurate than results derived with admittance assumptions from data-constrained tidal atlases. As linear admittance derived minor tides are routinely used for de-aliasing of satellite gravimetric data, this opens the potential for improving gravity field products by employing the solutions from TiME.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-02-12
    Description: We study optical pulse propagation through a hollow-core fiber filled with a radially inhomogeneous cloud of cold atoms. A copropagating control field establishes electromagnetically induced transparency. In analogy to a graded index fiber, the pulse experiences microlensing and the transmission spectrum becomes distorted. Based on a two-layer model of the complex index of refraction, we can analytically understand the cause of the aberration, which is corroborated by numerical simulations for a radial Gaussian-shaped function. With these insights, we show that the spectral distortions can be rectified by choosing an optimal detuning from one-photon resonance.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-02-12
    Description: Time-variable gravity field models derived from observations of the Gravity Recovery and Climate Experiment (GRACE) mission, whose science operations phase ended in June 2017 after more than 15 years, enabled a multitude of studies of Earth’s surface mass transport processes and climate change. The German Research Centre for Geosciences (GFZ), routinely processing such monthly gravity fields as part of the GRACE Science Data System, has reprocessed the complete GRACE mission and released an improved GFZ GRACE RL06 monthly gravity field time series. This study provides an insight into the processing strategy of GFZ RL06 which has been considerably changed with respect to previous GFZ GRACE releases, and modifications relative to the precursor GFZ RL05a are described. The quality of the RL06 gravity field models is analyzed and discussed both in the spectral and spatial domain in comparison to the RL05a time series. All results indicate significant improvements of about 40% in terms of reduced noise. It is also shown that the GFZ RL06 time series is a step forward in terms of consistency, and that errors of the gravity field coefficients are more realistic. These findings are confirmed as well by independent validation of the monthly GRACE models, as done in this work by means of ocean bottom pressure in situ observations and orbit tests with the GOCE satellite. Thus, the GFZ GRACE RL06 time series allows for a better quantification of mass changes in the Earth system.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-10-21
    Description: Satellite altimetry observations have provided a significant contribution to the understanding of global sea surface processes, particularly allowing for advances in the accuracy of ocean tide estimations. Currently, almost three decades of satellite altimetry are available which can be used to improve the understanding of ocean tides by allowing for the estimation of an increased number of minor tidal constituents. As ocean tide models continue to improve, especially in the coastal region, these minor tides become increasingly important. Generally, admittance theory is used by most global ocean tide models to infer several minor tides from the major tides when creating the tidal correction for satellite altimetry. In this paper, regional studies are conducted to compare the use of admittance theory to direct estimations of minor tides from the EOT20 model to identify which minor tides should be directly estimated and which should be inferred. The results of these two approaches are compared to two global tide models (TiME and FES2014) and in situ tide gauge observations. The analysis showed that of the eight tidal constituents studied, half should be inferred (2N2, ϵ2, MSF and T2), while the remaining four tides (J1, L2, μ2 and ν2) should be directly estimated to optimise the ocean tidal correction. Furthermore, for certain minor tides, the other two tide models produced better results than the EOT model, suggesting that improvements can be made to the tidal correction made by EOT when incorporating tides from the two other tide models. Following on from this, a new approach of merging tidal constituents from different tide models to produce the ocean tidal correction for satellite altimetry that benefits from the strengths of the respective models is presented. This analysis showed that the tidal correction created based on the recommendations of the tide gauge analysis provided the highest reduction of sea-level variance. Additionally, the combination of the EOT20 model with the minor tides of the TiME and FES2014 model did not significantly increase the sea-level variance. As several additional minor tidal constituents are available from the TiME model, this opens the door for further investigations into including these minor tides and optimising the tidal correction for improved studies of the sea surface from satellite altimetry and in other applications, such as gravity field modelling.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-09-07
    Description: As a supplement to Huang et al. (2021) “Anelasticity and lateral heterogeneities in Earth’s upper mantle: impact on surface displacements, self-attraction and loading and ocean tide dynamics”, the global amplitude and root-mean-square fields of surface vertical displacement and self-attraction and loading due to ocean tide loading - the M2 tide derived from model TiME (Sulzbach et al., 2021), and the root-mean-square fields of M2 tide are presented here. The fields have been calculated for the 1D elastic solid Earth model PREM and 3D and 1D anelastic models. Figures 4-7, S1 and S2, and tables 1-2 in Huang et al. (2021) can be easily reproduced from these data fields applying the calculus discussed in the paper. The anelastic Earth models can be constructed with the methodology outlined in Huang et al. (2021) by making use of the elastic and attenuation tomography models from the University of California, Berkeley (Karaoğlu, H. & Romanowicz, B., 2018) and the École Normale Supérieure (ENS) de Lyon (Debayle et al., 2020), respectively. All response fields (U and SAL) are calculated with the spectral-finite element method (Martinec 2000, Tanaka et al. 2019).
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-09-20
    Description: Surface displacements and self-attraction and loading (SAL) elevation induced by ocean tides are known to be affected by material properties of the solid Earth. Recent studies have shown that, in addition to elasticity, anelasticity considerably impacts surface displacements due to ocean tide loading (OTL). We employ consistent 3D seismic elastic and attenuation tomography models to construct 3D elastic and anelastic earth models, and derive corresponding averaged 1D elastic/anelastic models. We apply these models to systematically study the impact of anelasticity and lateral heterogeneity on M2 OTL displacements and SAL elevation. We find that neglecting lateral heterogeneities highly underestimates displacements and SAL elevation in mid-ocean-ridge regions and in some coastal areas of North and Central America. In comparison to PREM, 3D anelastic models can increase the predicted amplitudes of the vertical displacement and SAL elevation by up to 1.5 mm. The increased amplitudes reduce the discrepancy between GPS-observed OTL displacements and their predictions based on PREM in places like Cornwall (England), Brittany (France) and the Ryukyu Islands (Japan). Applying our results to ocean tides, we discover that the impact on ocean tide dynamics exceeds the predicted SAL elevation correction with an RMS of about 1 mm, reaching an RMS of more than 5 mm in areas like North Atlantic or East Pacific. Due to the fact that such a value reaches the accuracy of modern data-constrained tidal models, we regard the impact of anelastic shear relaxation as significant in tidal modelling.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-01-17
    Description: As a supplement to Huang et al. (2022) “The influence of sediments, lithosphere and upper mantle (anelastic) with lateral heterogeneity on ocean tide loading and ocean tide dynamics”, we provide for the advanced earth model LH-Lyon-3Dae [consisting of 3D elastic sediments, lithosphere and 3D anelastic upper mantle structures, see Huang et al.(2022) for details] the solutions of vertical ocean tide loading (OTL) displacement, self-attraction and loading (SAL) elevation, and ocean tides. Solutions for three tidal constituents, i.e., M2, K1 and Mf, are given. As a comparison, solutions based on the 1D elastic model PREM and the 1D anelastic LH-Lyon-1Dae are also presented. With these solutions, the primary results in Huang et al. (2022) such as the model amplitude differences, RMS differences and the predictions in GNSS stations can be reconstructed.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...