ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of plant growth regulation 8 (1989), S. 301-307 
    ISSN: 1435-8107
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Thidiazuron [(TDZ)N-phenyl-N′-1,2,3-thidiazol-5-ylurea] at 750 μM was applied to buds of apple trees to determine if it could substitute for the chilling requirement to induce bud break. Shoots of cv. ‘Anna’ (low chill), ‘Delicious’ cv. Redchief (medium chill), and ‘Northern Spy’ (high chill) were untreated, treated with TDZ prior to chilling (before-chill), and treated with TDZ at various intervals after the accumulation of specific amounts of chilling (after-chill). Shoots were stored in a cold room at 4°C. TDZ applied prior to chilling reduced the chill unit (CU) requirement (1 CU = 1 h at 4°C) for the promotion of bud break on 1-year-old shoots of ‘Anna’ and ‘Northern Spy’ and 1- and 2-year-old wood of ‘Delicious.’ TDZ applied after-chill promoted bud break only for ‘Anna’ and buds on 2-year-old wood of ‘Delicious.’ While accumulating CUs, untreated buds or buds treated with TDZ on 1-year ‘Delicious’ and ‘Northern Spy’ did not respond to the cold treatment even after 1848 h of CU accumulation. For all three cultivars, TDZ treatment was more effective in promoting bud break when applied before the initiation of chilling.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2006-05-10
    Print ISSN: 0032-0935
    Electronic ISSN: 1432-2048
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2005-09-14
    Print ISSN: 0032-0935
    Electronic ISSN: 1432-2048
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-08-24
    Description: Peanut (Arachis hypogaea L.) plants were grown hydroponically, using continuously recirculating nutrient solution. Two culture tray designs were tested; one tray design used only nutrient solution, while the other used a sphagnum-filled pod development compartment just beneath the cover and above the nutrient solution. Both trays were fitted with slotted covers to allow developing gynophores to reach the root zone. Peanut seed yields averaged 350 gm-2 dry mass, regardless of tray design, suggesting that substrate is not required for hydroponic peanut production.
    Keywords: Man/System Technology and Life Support
    Type: HortScience : a publication of the American Society for Horticultural Science (ISSN 0018-5345); Volume 33; 4; 650-1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-08-24
    Description: Sodium (Na) movement between plants and humans is one of the more critical aspects of bioregenerative systems of life support, which NASA is studying for the establishment of long-term bases on the Lunar or Martian surface. This study was conducted to determine the extent to which Na can replace potassium (K) in red beet (Beta vulgaris L. ssp vulgaris) without adversely affecting metabolic functions such as water relations, photosynthetic rates, and thus growth. Two cultivars, Ruby Queen and Klein Bol, were grown for 42 days at 1200 micromoles mol-1 CO2 in a growth chamber using a re-circulating nutrient film technique with 0%, 75%, 95%, and 98% Na substitution for K in a modified half-strength Hoagland solution. Total biomass of Ruby Queen was greatest at 95% Na substitution and equal at 0% and 98% Na substitution. For Klein Bol, there was a 75% reduction in total biomass at 98% Na substitution. Nearly 95% of the total plant K was replaced with Na at 98% Na substitution in both cultivars. Potassium concentrations in leaves decreased from 120 g kg-1 dwt in 0% Na substitution to 3.5 g kg-1 dwt at 98% Na substitution. Leaf chlorophyll concentration, photosynthetic rate, and osmotic potential were not affected in either cultivar by Na substitution for K. Leaf glycinebetaine levels were doubled at 75% Na substitution in Klein Bol, but decreased at higher levels of Na substitution. For Ruby Queen, glycinebetaine levels in leaf increased with the first increase of Na levels and were maintained at the higher Na levels. These results indicate that in some cultivars of red beet, 95% of the normal tissue K can be replaced by Na without a reduction in growth.
    Keywords: Man/System Technology and Life Support
    Type: Journal of plant nutrition (ISSN 0190-4167); Volume 22; 11; 1745-61
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-08-24
    Description: Due to the discrepancy in metabolic sodium (Na) requirements between plants and animals, cycling of Na between humans and plants is limited and critical to the proper functioning of bio-regenerative life support systems, being considered for long-term human habitats in space (e.g., Martian bases). This study was conducted to determine the effects of limited potassium (K) on growth, Na uptake, photosynthesis, ionic partitioning, and water relations of red-beet (Beta vulgaris L. ssp. vulgaris) under moderate Na-saline conditions. Two cultivars, Klein Bol, and Ruby Queen were grown for 42 days in a growth chamber using a re-circulating nutrient film technique where the supplied K levels were 5.0, 1.25, 0.25, and 0.10 mM in a modified half-strength Hoagland solution salinized with 50 mM NaCl. Reducing K levels from 5.0 to 0.10 mM quadrupled the Na uptake, and lamina Na levels reached -20 g kg-1 dwt. Lamina K levels decreased from -60 g kg-1 dwt at 5.0 mM K to -4.0 g kg-1 dwt at 0.10 mM K. Ruby Queen and Klein Bol responded differently to these changes in Na and K status. Klein Bol showed a linear decline in dry matter production with a decrease in available K, whereas for cv. Ruby Queen, growth was stimulated at 1.25 mM K and relatively insensitive to a further decreases of K down to 0.10 mM. Leaf glycinebetaine levels showed no significant response to the changing K treatments. Leaf relative water content and osmotic potential were significantly higher for both cultivars at low-K treatments. Leaf chlorophyll levels were significantly decreased at low-K treatments, but leaf photosynthetic rates showed no significant difference. No substantial changes were observed in the total cation concentration of plant tissues despite major shifts in the relative Na and K uptake at various K levels. Sodium accounted for 90% of the total cation uptake at the low K levels, and thus Na was likely replacing K in osmotic functions without negatively affecting the plant water status, or growth. Our results also suggest that cv. Ruby Queen can tolerate a much higher Na tissue concentration than cv. Klein Bol before there is any growth reduction. Grant numbers: 12180.
    Keywords: Man/System Technology and Life Support
    Type: Journal of plant nutrition (ISSN 0190-4167); Volume 23; 10; 1449-70
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-08-24
    Description: The Biomass Production Chamber at John F. Kennedy Space Center is a closed plant growth chamber facility that can be used to monitor the level of biogenic emissions from large populations of plants throughout their entire growth cycle. The head space atmosphere of a 26-day-old lettuce (Lactuca sativa cv. Waldmann's Green) stand was repeatedly sampled and emissions identified and quantified using GC-mass spectrometry. Concentrations of dimethyl sulphide, carbon disulphide, alpha-pinene, furan and 2-methylfuran were not significantly different throughout the day; whereas, isoprene showed significant differences in concentration between samples collected in light and dark periods. Volatile organic compounds from the atmosphere of wheat (Triticum aestivum cv. Yecora Rojo) were analysed and quantified from planting to maturity. Volatile plant-derived compounds included 1-butanol, 2-ethyl-1-hexanol, nonanal, benzaldehyde, tetramethylurea, tetramethylthiourea, 2-methylfuran and 3-methylfuran. Concentrations of volatiles were determined during seedling establishment, vegetative growth, anthesis, grain fill and senescence and found to vary depending on the developmental stage. Atmospheric concentrations of benzaldehyde and nonanal were highest during anthesis, 2-methylfuran and 3-methylfuran concentrations were greatest during grain fill, and the concentration of the tetramethylurea peaked during senescence.
    Keywords: Life Sciences (General)
    Type: Phytochemistry (ISSN 0031-9422); Volume 39; 6; 1351-7
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-08-24
    Description: Atmospheres of enclosed environments in which 20 m2 stands of wheat, potato, and lettuce were grown were characterized and quantified by gas chromatography-mass spectrometry. A large number (in excess of 90) of volatile organic compounds (VOCs) were identified in the chambers. Twenty eight VOC's were assumed to be of biogenic origin for these were not found in the chamber atmosphere when air samples were analyzed in the absence of plants. Some of the compounds found were unique to a single crop. For example, only 35% of the biogenic compounds detected in the wheat atmosphere were unique to wheat, while 36% were unique to potato and 26% were unique to lettuce. The number of compounds detected in the wheat (20 compounds) atmosphere was greater than that of potato (11) and lettuce (15) and concentration levels of biogenic and non-biogenic VOC's were similar.
    Keywords: Man/System Technology and Life Support
    Type: Advances in space research : the official journal of the Committee on Space Research (COSPAR); Volume 18; 4-5; 189-92
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-08-24
    Description: The Biomass Production Chamber (BPC) located at Kennedy Space Center, FL, USA provides a large (20 m2 area, 113 m3 vol.), closed environment for crop growth tests for NASA's Controlled Ecological Life Support System (CELSS) program. Since the summer of 1988, the chamber has operated on a near-continuous basis (over 1200 days) without any major failures (excluding temporary power losses). During this time, five crops of wheat (64-86 days each), three crops of soybean (90 to 97 days), five crops of lettuce (28-30 days), and four crops of potato (90 to 105 days were grown, producing 481 kg of dry plant biomass, 196 kg edible biomass, 540 kg of oxygen, 94,700 kg of condensed water, and fixing 739 kg of carbon dioxide. Results indicate that total biomass yields were close to expected values for the given light input, but edible biomass yields and harvest indices were slightly lower than expected. Stand photosynthesis, respiration, transpiration, and nutrient uptake rates were monitored throughout growth and development of the different crops, along with the build-up of ethylene and other volatile organic compounds in the atmosphere. Data were also gathered on system hardware maintenance and repair, as well as person-hours required for chamber operation. Future tests will include long-term crop production studies, tests in which nutrients from waste treatment systems will be used to grow new crops, and multi-species tests.
    Keywords: Man/System Technology and Life Support
    Type: Advances in space research : the official journal of the Committee on Space Research (COSPAR); Volume 18; 4-5; 215-24
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-08-24
    Description: The effect of photoperiod (PP) on net carbon assimilation rate (Anet) and starch accumulation in newly mature canopy leaves of 'Norland' potato (Solanum tuberosum L.) was determined under high (412 varies as mol m-2s-1) and low (263 varies as mol m-2s-1) photosynthetic photon flux (PPF) conditions. The Anet decreased from 13.9 to 11.6 and 9.3 micromoles m-2s-1, and leaf starch increased from 70 to 129 and 118 mg g-1 drymass (DM) as photoperiod (PP) was increased from 12/12 to 18/6, and 24/0, respectively. Longer PP had a greater effect with high PPF conditions than with low PPF treatments, with high PPF showing greater decline in Anet. Photoperiod did not affect either the CO2 compensation point (50 micromoles mol-1) or CO2 saturation point (1100-1200 micromoles mol-1) for Anet. These results show an apparent limit to the amount of starch that can be stored (approximately 15% DM) in potato leaves. An apparent feedback mechanism exists for regulating Anet under high PPF, high CO2, and long PP, but there was no correlation between Anet and starch concentration in individual leaves. This suggests that maximum Anet cannot be sustained with elevated CO2 conditions under long PP (〉 or = 12 hours) and high PPF conditions. If a physiological limit exists for the fixation and transport of carbon,then increasing photoperiod and light intensity under high CO2 conditions is not the most appropriate means to maximize the yield of potatoes.
    Keywords: Man/System Technology and Life Support
    Type: Journal of the American Society for Horticultural Science. American Society for Horticultural Science (ISSN 0003-1062); Volume 121; 2; 264-8
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...