ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-08-17
    Description: NASA and the FAA conducted two flight campaigns to quantify onboard weather radar measurements with in-situ measurements of high concentrations of ice crystals found in deep convective storms. The ultimate goal of this research was to improve the understanding and develop onboard weather radar processing to detect regions of high ice water content ahead of an aircraft and enable tactical avoidance of the potentially hazardous conditions. Both High Ice Water Content (HIWC) RADAR campaigns utilized the NASA DC-8 Airborne Science Laboratory which was equipped with a Honeywell RDR-4000 weather radar and icing instruments to characterize the ice crystals clouds. The purpose of this paper is to summarize how these campaigns were conducted and highlight key results.
    Keywords: Meteorology and Climatology
    Type: GRC-E-DAA-TN69115 , SAE International Conference on Icing of Aircraft, Engines, and Structures; Jun 17, 2019 - Jun 21, 2019; Minneapolis, MN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: During August 2015, NASA's DC-8 research aircraft was flown into High Ice Water Content (HIWC) events as part of a three-week campaign to collect airborne radar data and to obtain measurements from microphysical probes. Goals for this flight campaign included improved characterization of HIWC events, especially from an airborne radar perspective. This paper focuses on one of the flight days, in which a coastal mesoscale convective system (MCS) was investigated for HIWC conditions. The system appears to have been maintained by bands of convection flowing in from the Gulf of Mexico. These convective bands were capped by a large cloud canopy, which masks the underlying structure if viewed from an infrared sensing satellite. The DC-8 was equipped with an IsoKinetic Probe that measured ice concentrations of up to 2.3 g m(exp -3) within the cloud canopy of this system. Sustained measurements of ice crystals with concentrations exceeding 1 g m(exp -3) were encountered for up to ten minutes of flight time. Airborne Radar reflectivity factors were found to be weak within these regions of high ice water concentrations, suggesting that Radar detection of HIWC would be a challenging endeavor. This case is then investigated using a three-dimensional numerical cloud model. Profiles of ice water concentrations and radar reflectivity factor demonstrate similar magnitudes and scales between the flight measurements and model simulation. Also discussed are recent modifications to the numerical model's ice-microphysics that are based on measurements during the flight campaign. The numerical model and its updated ice-microphysics are further validated with a simulation of a well-known case of a supercell hailstorm measured during the Cooperative Convective Precipitation Experiment. Differences in HIWC between the continental supercell and the coastal MCS are discussed.
    Keywords: Air Transportation and Safety
    Type: NF1676L-26975 , 9th AIAA Atmospheric and Space Environments Conference Proceedings; Jun 05, 2017 - Jun 09, 2017; Denver, CO; United States|AIAA Aviation Technology, Integration, and Operations Conference (AVIATION 2017); Jun 05, 2017 - Jun 09, 2017; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: NASA and the FAA (Federal Aviation Administration) conducted two flight campaigns to quantify onboard weather radar measurements with in-situ measurements of high concentrations of ice crystals found in deep convective storms. The ultimate goal of this research was to improve the understanding and develop onboard weather radar processing to detect regions of high ice water content ahead of an aircraft and enable tactical avoidance of the potentially hazardous conditions. Both High Ice Water Content (HIWC) RADAR campaigns utilized the NASA DC-8 Airborne Science Laboratory which was equipped with a Honeywell RDR-4000 weather radar and icing instruments to characterize the ice crystal clouds. The purpose of this paper is to summarize how these campaigns were conducted and highlight key results.
    Keywords: Meteorology and Climatology
    Type: GRC-E-DAA-TN66897 , International Conference on Icing of Aircraft, Engines, and Structures; Jun 17, 2019 - Jun 21, 2019; Minneapolis, MN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...