ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Fire and Materials 20 (1996), S. 301-303 
    ISSN: 0308-0501
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Autoignition temperature and heat of combustion are two important parameters in determining the oxygen compatibility of materials. This study investigates the autoignition temperature of 32 polymers at an elevated oxygen pressure of 10.3 MPa and reports their heat of combustion. © 1996 by John Wiley & Sons, Ltd.
    Additional Material: 1 Tab.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-19
    Description: When oxygen is present in high concentrations or large quantities, as in oxygen-based life-support systems, the likelihood of combustion and the probable intensity of a conflagration increase, together with the severity of the damage caused. Even stainless steel will burn vigorously when ignited in a 1000-psi oxygen environment. The hazards involved in the use of oxygen increase with system operation at the elevated temperatures typical of propulsion systems. Fires in oxygen systems are generally catastrophic, causing a threat to life in manned vehicles. When mechanical components of a mechanism generate friction heat in the presence of oxygen, many commonly used metal alloys ignite and burn. Attention is presently given to frictional heating, particle impact, and flame propagation tests conducted in oxygen environments.
    Keywords: METALLIC MATERIALS
    Type: Lockheed Horizons (ISSN 0459-6773); 40-47
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-08-31
    Description: Materials are more flammable in oxygen rich environments than in air. When the structural elements of a system containing oxygen ignite and burn, the results are often catastrophic, causing loss of equipment and perhaps even human lives. Therefore, selection of the proper metallic and non-metallic materials for use in oxygen systems is extremely important. While test methods for the selection of non-metallic materials have been available for years, test methods for the selection of alloys have not been available until recently. Presented here are several test methods that were developed recently at NASA's White Sands Test Facility (WSTF) to study the ignition and combustion of alloys, including the supersonic and subsonic speed particle impact tests, the frictional heating and coefficient of friction tests, and the promoted combustion test. These test methods are available for commercial use.
    Keywords: METALLIC MATERIALS
    Type: NASA, Washington, Technology 2001: The Second National Technology Transfer Conference and Exposition, Volume 1; p 183-192
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-28
    Description: Apparatus and method are disclosed for producing oxides of metals and of metal alloys. The metal or alloy is placed in an oxygen atmosphere in a combustion chamber and ignited. Products of the combustion include one or more oxides of the metal or alloy in powdered form. In one embodiment of the invention a feeder is provided whereby material to be oxidized by combustion can be achieved into a combustion chamber continuously. A product remover receives the powder product of the combustion.
    Keywords: Nonmetallic Materials
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-06-28
    Description: Because most materials, including metals, will burn in an oxygen-enriched environment, hazards are always present when using oxygen. Most materials will ignite at lower temperatures in an oxygen-enriched environment than in air, and once ignited, combustion rates are greater in the oxygen-enriched environment. Many metals burn violently in an oxygen-enriched environment when ignited. Lubricants, tapes, gaskets, fuels, and solvents can increase the possibility of ignition in oxygen systems. However, these hazards do not preclude the use of oxygen. Oxygen may be safely used if all the materials in a system are not flammable in the end-use environment or if ignition sources are identified and controlled. These ignition and combustion hazards necessitate a proper oxygen hazards analysis before introducing a material or component into oxygen service. The objective of this test plan is to describe the White Sands Test Facility oxygen hazards analysis to be performed on components and systems before oxygen is introduced and is recommended before implementing the oxygen component qualification procedure. The plan describes the NASA Johnson Space Center White Sands Test Facility method consistent with the ASTM documents for analyzing the hazards of components and systems exposed to an oxygen-enriched environment. The oxygen hazards analysis is a useful tool for oxygen-system designers, system engineers, and facility managers. Problem areas can be pinpointed before oxygen is introduced into the system, preventing damage to hardware and possible injury or loss of life.
    Keywords: Inorganic and Physical Chemistry
    Type: NASA-TM-104823 , NAS 1.15:104823 , S-819
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-06-28
    Description: In the preferred embodiment of the promoted combusiton chamber disclosed herein, a thick-walled tubular body that is capable of withstanding extreme pressures is arranged with removable upper and lower end closures to provide access to the chamber for dependently supporting a test sample of a material being evaluated in the chamber. To facilitate the real-time analysis of a test sample, several pressure-tight viewing ports capable of withstanding the simulated environmental conditions are arranged in the walls of the tubular body for observing the test sample during the course of the test. A replaceable heat-resistant tubular member and replaceable flame-resistant internal liners are arranged to be fitted inside of the chamber for protecting the interior wall surfaces of the combustion chamber during the evaluation tests. Inlet and outlet ports are provided for admitting high-pressure gases into the chamber as needed for performing dynamic analyses of the test sample during the course of an evaluation test.
    Keywords: RESEARCH AND SUPPORT FACILITIES (AIR)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-06-28
    Description: Results from frictional heating tests to determine the effects of oxygen pressure on the Pv production required for igntion are presented. Materials tested include: Monel K-500 and 1015 carbon steels at pressures varied from 100 to 3000 PSIG).
    Keywords: INORGANIC AND PHYSICAL CHEMISTRY
    Type: NASA-CR-179505-VOL-4 , NAS 1.26:179505-VOL-4 , TR-324-001-VOL-4
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-06-28
    Description: Advances in the design of the liquid oxygen, liquid hydrogen engines for the Space Transportation System call for the use of warm, high-pressure oxygen as the driving gas in the liquid oxygen turbopump. The NASA Lewis Research Center requested the NASA White Sands Test Facility (WSTF) to design a test program to determine the relative resistance to ignition of nine selected turbopump materials: Hastelloy X, Inconel 600, Invar 36, Monel K-500, nickel 200, silicon carbide, stainless steel 316, and zirconium copper. The materials were subjected to particle impact and to frictional heating in high-pressure oxygen.
    Keywords: INORGANIC AND PHYSICAL CHEMISTRY
    Type: NASA-CR-179505-VOL-1 , NAS 1.26:179505-VOL-1 , TR-324-001-VOL-1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-06-28
    Description: Data from the particle impact tests are presented. Results are provided for the frictional heating tests of pairs of like materials. The materials tested include: Hastelloy X, Inconel 600, Invar 36, Monel K-500, Monel 400, nickel 200, silicon carbide, stainless steel 316, and zironium copper.
    Keywords: INORGANIC AND PHYSICAL CHEMISTRY
    Type: NASA-CR-179505-VOL-2 , NAS 1.26:179505-VOL-2 , TR-324-001-VOL-2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-06-28
    Description: Data is presented from frictional heating tests on pairs of different materials. Materials tested include: Hastelloy X, Inconel 600, Invar 36, Monel K-500, Monel 400, nickel 200, silicon carbide, stainless steels 316, and zirconium copper. In tests where pairs of different materials were rubbed together, the material rated less resistant to ignition in previous tests appeared to control the resistance to ignition of the pair.
    Keywords: INORGANIC AND PHYSICAL CHEMISTRY
    Type: NASA-CR-179505-VOL-3 , NAS 1.26:179505-VOL-3 , TR-324-001-VOL-3
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...