ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Publication Date: 2014-12-06
    Description: Background:Flow cytometric studies are useful in the diagnostic workup of patients with unexplained cytopenias and it has been demonstrated that bone marrow aspirates with immunophenotypic abnormalities by flow cytometry but not diagnostic morphologic or cytogenetic findings frequently evolve into myelodysplastic syndromes (MDS) (Kern 2013). Two flow cytometric scoring systems (FCSSs), the Wells FCSS and the Ogata FCSS, have diagnostic and prognostic utility. The Wells FCSS utilizes a difference from normal algorithm incorporating more than ten phenotypic parameters. The accumulation of these abnormalities is not only useful in diagnosis but is predictive of patient outcome (Wells 2003, Scott 2008, Alhan 2014). The recommended Ogata FCSS has evolved to include four cardinal parameters: (1) CD45 intensity on the myeloid progenitors, (2) frequency of lymphoblasts, (3) frequency of myeloid progenitors, and (4) granularity of the maturing myeloid cells. The Wells FCSS is more comprehensive as it uses more phenotypic characteristics, while the Ogata score is considered straightforward to implement in a routine setting (Della Porta 2012, Ogata 2009). This study compares the Wells FCSS and Ogata FCSS for sensitivity and specificity to detect clonal abnormalities documented by SNP/CGH microarray and conventional cytogenetics. Patients and Methods: The cohort included 99 patients with unexplained cytopenias whose bone marrow aspirates were submitted for SNP/CGH microarray and flow cytometry (HematoLogics). The immunophenotypic data were independently assigned a Wells FCSS (Cutler 2012) and an Ogata FCSS (Della Porta 2012). SNP/CGH microarray was assessed for MDS-associated genetic abnormalities. The findings were further correlated with conventional cytogenetic findings. Results: Of the 99 bone marrow aspirates, 20 exhibited clonal abnormalities associated with MDS. The Wells FCSS identified immunophenotypic abnormalities suggestive of MDS for 18 of 20 CGH positive specimens (sensitivity of 90%) and did not detect phenotypic abnormalities suggestive of MDS in 68 of 79 CGH negative specimens (specificity of 86%). In contrast the Ogata FCSS identified immunophenotypic abnormalities suggestive of MDS for 13 of 20 CGH positive specimens (sensitivity of 65%) and did not detect phenotypic abnormalities suggestive of MDS in 64 of 79 the CGH negative specimens (specificity of 81%). In an attempt to improve the sensitivity and specificity of the Ogata score, the granularity parameter was modified from side scatter channel mode of the granulocytes (compared to the side scatter mode of the lymphocytes) to the side scatter channel at the 15thpercentile of granulocytes (compared to the mean of lymphocytes). This modified parameter detected all specimens defined as hypogranular by the side scatter mode, and detected an additional 11 specimens as hypogranular. All of these specimens were detected as hypogranular by the Wells definition. This modified granularity method was then used along with the other three cardinal parameters to create a modified Ogata FCSS. The granularity modification resulted in improved sensitivity (70% versus 65%); specificity was unchanged. While the modified method outperformed the original, it did not match the performance of the Wells FCSS. Conclusions: In patients with unexplained cytopenias, the Wells FCSS demonstrates superior specificity and sensitivity than the Ogata FCSS for detecting myeloid immunophenotypic clones associated with SNP/CGH array and cytogenetic abnormalities. Modifying the Ogata granularity parameter marginally improves the sensitivity but does not improve the specificity. Implementation of the Wells FCSS requires a comprehensive understanding of phenotypic intensities and relationships in non-clonal hematopoiesis for patients with cytopenias. While the relative ease of implementing the Ogata FCSS is attractive, improvements are essential for diagnostic accuracy; improving the granularity parameter alone is not sufficient. Adding measurements for the maturing myeloid and erythroid compartments may increase the diagnostic utility of the Ogata FCSS but requires further study. Disclosures Brodersen: Hematologics Inc.: Employment. Menssen:Hematologics Inc.: Employment. Zehentner:HematoLogics Inc.: Employment, Equity Ownership. Stephenson:Hematologics Inc.: Employment. de Baca:Hematologics Inc.: Employment. Johnson:Hematologics Inc.: Employment. Singleton:Hematologics Inc.: Employment. Hartmann:Hematologics Inc.: Employment. Loken:Hematologics: Employment, Equity Ownership. Wells:HematoLogics Inc.: Employment, Equity Ownership.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-12-06
    Description: Background: Single nucleotide polymorphism (SNP) and comparative genomic hybridization (CGH) microarray analysis is a powerful tool to assess myelodysplastic bone marrow specimens for the presence of genomic gains and losses as well as loss of heterozygosity (LOH) (reviewed by Nybakken & Bagg, JMD 2014). Its application can be a valuable addition to conventional cytogenetic analysis and may be superior to FISH testing for MDS assessment. Currently, microarray analysis does not have widespread use in an MDS work-up. Several groups have demonstrated that flow cytometric analysis can detect phenotypic aberrations in bone marrow aspirates with cytopenias with more abnormalities identified in patients with poor prognosis or with multiple genotypic abnormalities (Loken et al. 2008; Cutler et al. 2011; van de Loosdrecht et al. 2013). In this study SNP microarray results were compared with conventional cytogenetic and MDS panel FISH findings as well as phenotypic abnormalities detected by flow cytometry. Patients and Methods: 185 bone marrow aspirate specimens submitted to our laboratory for MDS work-up were analyzed by SNP/CGH studies. 36 of these (19.5%) were positive by SNP/CGH microarray analysis. 32 of the positive microarray cases (88.9%) were also analyzed by conventional cytogenetic studies, 35 (97.2%) by MDS FISH panel (5p, 7q, +8, -17p, -20q) and 31 (86.1%) were assessed by multidimensional flow cytometry (FCM) and were assigned an FCSS score (Wells et al. 2003). Results: Of the specimens in which the SNP/CGH array demonstrated genotypic abnormalities, 11/32 (34.4%) were negative by conventional cytogenetic analysis while 12/35 (34.3%) showed no abnormalities by MDS FISH panel analysis. SNP/CGH analysis revealed additional chromosomal gains and losses in 18/32 (56%) in comparison to cytogenetic analysis and in 22/35 (63%) in comparison to FISH analysis. Loss of Heterozygosity regions were detected in 28/36 cases (78%) with 96.4% (27/28) of these being larger than 2 Mb and 53% (19/28) spanning a significant chromosomal region (e.g. 1p, 5q, 7q and 17p) with known oncogenic and other MDS related genes. In 10/32 cases (31%), microarray analysis was able to characterize the origin of marker chromosome material, previously reported with unknown identity by conventional cytogenetic analysis. In an additional subset of 10 out of 32 cases (31%), cytogenetic analysis was able to either characterize balanced translocations or low level sub-clonal abnormalities not identified by microarray analysis alone. In 11/36 (31%) microarray analysis was able to detect clonal heterogeneity and evolution. In none of the specimens did FISH analysis detected abnormalities not revealed by microarray analysis. Flow cytometry performed on 31 of the array positive specimens revealed 6 to have 〉20% abnormal myeloid progenitor cells (classified as AML) while 23 the remaining 25 cases showed phenotypic abnormalities consistent with MDS (FCSS ranging from 1-6). In two specimens with a FCSS of 0, LOH regions on 16q or 1p and 21q were found, respectively, without the presence of numerical aberrations. A FCSS score of 1 with minimal phenotypic abnormalities (n=3), was comprised of one specimen with del(5q), one with LOH of 7q and one with trisomy 8, 1p loss and 1q gain. Specimens with an FCSS of 2 (n=7) showed only one specimen classified as complex (5 or more abnormalities). The two FCSS =3 specimens showed del(5q) with del(12p) and several LOH regions, not complex findings. One of the 4 specimen with FCSS = 4 was classified as complex while the other 3 specimens showed monosomy 7, LOH of 7q or LOH of 1p, respectively. Genotypic abnormalities were also related to phenotypic abnormalities in 4/7 (57%) specimens in the FCSS = 5/6 category which revealed complex microarray findings. Half (3/6) of the AML class had complex findings as well. Conclusions: These results emphasize the additional value that CGH/SNP microarray analysis adds to conventional cytogenetic analysis. Our dataset confirms that FISH studies do not provide additional information for MDS specimens positive by cytogenetic and/or microarray analysis. Most importantly, a high correlation between our phenotypic flow cytometric scoring system for myeloid abnormalities and microarray findings has been identified. Higher flow cytometric abnormality scores correlate with increasing complexity of genomic abnormalities. Disclosures Zehentner: HematoLogics Inc.: Employment, Equity Ownership. Brodersen:Hematologics Inc.: Employment. Stephenson:Hematologics Inc.: Employment. de Baca:Hematologics Inc.: Employment. Menssen:Hematologics Inc.: Employment. Hammock:Hematologics Inc.: Employment. Johnson:Hematologics Inc.: Employment. Hartmann:Hematologics Inc.: Employment. Loken:Hematologics Inc.: Employment, Equity Ownership. Wells:HematoLogics Inc.: Employment, Equity Ownership.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2004-11-16
    Description: Cytogenetics has proven an essential tool not only for confirming a diagnosis/classification, but for providing prognostic value as well in myelodysplastic syndromes (MDS). However, approximately 50% of primary MDS do not show discernible chromosome changes. In recent years, the fluorescence in situ hybridization (FISH) technique using gene or chromosome locus/region specific probes has emerged as a promising test in various hematopoietic and lymphoid neoplasms. To evaluate the application of FISH panels and cytogenetic studies in MDS, we retrospectively analyzed 1,885 consecutive bone marrow results from patients with suspected MDS due to cytopenia(s). In particular, we assessed the additional information a FISH reflex testing might have given in cytogenetically normal cases. The probes used in the panel included the EGR1 at 5q31, the D7S522 at 7q31, the D8Z2 for the centromere of chromosome 8, the MLL at 11q23 and the D20S108 at 20q12 (Vysis, Inc.). Among all patients, 190 (10%) had clonal chromosome abnormalities, mostly as reported in the literatures, eg, -5/5q- accounted for 34.7% of abnormalities, trisomy 8 29.5%, -7/7q- 14.2%, 20q- 13.7%. Of 345 cases with a FISH reflex test ordered and performed, only 3 (0.87%) showed positive results: a deletion of 7q31, a deletion of 20q12 and a deletion of 5q31 in 9.6%, 8.2% and 71.5% of interphase cells respectively. For the case with 5q- detected by FISH, only 12 metaphases were available for cytogenetic analysis. From our data and experience, at present, interphase FISH panel testing seems not to be an efficient and cost-effective method used as a screening test for cytopenia(s) in the diagnosis of MDS, different from its applications in B-cell chronic lymphoid leukemias, non-Hodgkin lymphomas and plasma cell neoplasms where neoplastic cells inherited not to divide easily in culture for metaphase analysis. Rather, it should be used for suspected MDS cases as a technique of choice for problematic specimens compromised for cytogenetic analysis such as cellular insufficiency, extended transit time and extremely low mitotic index or poor chromosome morphology. Until more genetic defect targeted probes become available with a better understanding of the stem cell biology and pathogenesis in MDS, cytogenetics is still the best and a “must” technique for detecting genomic aberrations in MDS and nearly all other myeloid hematopoietic neoplastic disorders.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2008-11-16
    Description: The RUNX1 (AML1) gene is a transcription factor that regulates expression of genes involved in hematopoietic cell differentiation. It is a gene located on chromosome 21 at q22. Genetic alterations of RUNX1 whether through loss-of-function point mutations, translocation or amplification are known to impact myeloid differentiation and trigger leukemic transformation in particular with respect to myelodysplasia and acute myeloid leukemia. However, while there are many articles describing the impact of these types of RUNX1 genetic alterations, there is a paucity of information regarding loss of the entire RUNX1 gene. The case in this abstract highlights the significance of understanding loss of the RUNX1 gene. An 87 year old patient presented for evaluation for anemia and leukopenia. Flow cytometric evaluation revealed 26% myeloid blasts and confirmed a diagnosis of acute myeloid leukemia (AML). The cytogenetic findings demonstrated a translocation between chromosomes 17 and 21 −t(17;21)(q11.2;q22). The dilemma then was to determine if this was a variant of the traditional t(15;17) associated with acute promyelocytic leukemia or a variant of the t(8;21) associated with the M2 subtype of AML. FISH studies determined that there was no involvement of the RARA gene and no evidence of a RUNX1/ETO rearrangement. However, there was a complete loss of RUNX1 on the abnormal chromosome 21. Thus, what appeared to be a balanced translocation included a cryptic loss of RUNX1. While this may be an interesting case presentation the more pertinent question is what is the impact of the RUNX1 loss? This case prompted a review of the data on complete loss of the RUNX1 gene which while limited suggests that RUNX1 loss on its own is not leukemogenic. This poster presents the data and implication of complete loss of RUNX1, the role of this loss in leukemogenesis and patient management.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-12-06
    Description: Background: Myelodysplastic syndromes (MDS) are associated with cytogenetic clones. To follow the maturation sequence of original clones and evolved subclones with additional cytogenetic abnormalities, progenitor cells, immature and mature myeloid cells were sorted by flow cytometry and analyzed separately by fluorescence in situ hybridization (FISH) and comparative genomic hybridization (CGH). Methods: Flow cytometry sorted cell fractions from bone marrows for sixteen patients with MDS-associated cytogenetic abnormalities were evaluated by FISH. Flow cytometric cell sorting was based on CD34+/low side scatter (SS) for progenitors, CD13+/CD16-/high SS for immature myeloid cells, and CD13+/CD16+/high SS for mature myeloid cells. Customized color labeling (spectrum orange, green and aqua) of FISH probe combinations were designed to detect and to analyze clonal evolution for each patient based on their known cytogenetic abnormalities and clonal evolution patterns. Three marrow aspirates were sorted for analysis by SNP/CGH microarray. Results: The 16 bone marrow specimens evaluated by FISH were categorized into three groups: (1) eight patients with a single, good-to-intermediate cytogenetic abnormality; (2) four patients with monosomy 7; and (3) four patients with more than one chromosome abnormality with evidence of clonal evolution by conventional cytogenetic analysis, excluding monosomy 7. The Group-1 abnormalities included deletion 20q (n=4), trisomy 8 (n=2), deletion 5q (n=1), and trisomy 11 (n=1). All specimens from this group showed FISH abnormalities in equal proportions in myeloid progenitors, immature and mature myeloid cells. Group-2 had four patients with monosomy 7. All four had monosomy 7 concentrated in the progenitor cells (45-79%) compared to immature and mature myeloid compartments (less than 9-36%). For Group-3, known original clones with single cytogenetic abnormalities (deletion 20q, monosomy 3, deletion 7q or 5q) were monitored by FISH analysis. Using customized FISH panels, the presence of subclones with additional cytogenetic aberrations (trisomy 8 in three patients and gain of a marker chromosome characterized by the centromere of chromosome 4 in a fourth patient) was assessed using single-cell resolution. The progenitor and immature myeloid compartments had the original founding clones containing a single cytogenetic abnormality at 15-34% and the subclones with the additional aberrations at 23-76%. In contrast, the mature myeloid cells were comprised of the original clone at 20-40%, but the subclones with additional aberrations were absent in the mature myeloid compartment in three patients and reduced by more than half in a fourth. For three patients sorted bone-marrow fractions were analyzed by SNP/CGH microarray. In one patient with trisomy 8 as the sole abnormality, the same aberration was observed in both the immature and mature myeloid compartments. In two other patients, additional abnormalities not seen in the mature myeloid cells were detected in the progenitor and immature myeloid compartments. Conclusions: These data show two main patterns for the distribution of clonal cytogenetic abnormalities among myeloid cells in MDS: 1) A continuous distribution at all stages of maturation was found for single aberrations with good-to-intermediate prognostic associations (Group 1) and 2) A disrupted distribution pattern with accumulation of the cytogenetic aberrations in the progenitor compartment as compared to the immature and mature myeloid compartments for specimens characterized by monosomy 7 (Group 2). Similarly, subclones characterized by additional cytogenetic abnormalities (Group 3) were sequestered in the progenitor and immature myeloid compartments while the original founding clone was evenly distributed throughout maturation. These data demonstrate that specific cytogenetic abnormalities associated with poor prognosis (e.g. monosomy 7) as well as acquired cytogenetic abnormalities as a result of clonal evolution can cause disruption of myeloid cell maturation in MDS. Disclosures Zehentner: HematoLogics Inc.: Employment, Equity Ownership. Hartmann:Hematologics Inc.: Employment. Johnson:Hematologics Inc.: Employment. Bennington:HematoLogics Inc.: Employment. Fritschle:HematoLogics Inc.: Employment. Ghirardelli:HematoLogics Inc.: Employment. Broderson:HematoLogics Inc.: Employment. Chapman:Hematologics Inc.: Employment. Stephenson:Hematologics Inc.: Employment. de Baca:Hematologics Inc.: Employment. Singleton:Hematologics Inc.: Employment. Wells:HematoLogics Inc.: Employment, Equity Ownership. Loken:Hematologics: Employment, Equity Ownership.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-11-18
    Description: Abstract 3442 Gains of 1q21 (CKS1B) in plasma cell neoplasms (PCNs) occur frequently and are generally thought to be indicative of an adverse prognosis. The International Myeloma Workshop Consensus Panel 2 (May 2011) found there is insufficient data to suggest routine use of 1q21 (CKS1B) in risk stratification of PCNs. This same Workshop confirmed that FISH testing in PCNs should be plasma cell (PC) specific. Despite this, many laboratories still perform conventional FISH (conv FISH) testing for PCNs primarily due to cost and labor constraints. This study had three objectives: 1) to examine the cytogenetic profile of patients with 1q21 abnormalities, 2) to observe if there was a difference between cytogenetic profiles and the incidence of each additional abnormality detected by cIg FISH vs. conv FISH, 3) to elucidate the significance of 1q21 in the prognosis of PCNs. The same probe set was used for both cIg and conv FISH: FGFR3/IGH [t(4;14)], IGH/MAF [t(14;16)], CCND1/IGH [t(11;14)], RB1/LAMP1 (13q14/13q34), TP53 [del(17)(p17.1)] and 1q21 (CKS1B). For conv FISH ≥200 nuclei/probe were scored. For cIg FISH 100 cIg+ cells were scored/probe and ≥25 cIg+ cells required for conclusive reporting. cIg FISH was performed on bone marrow aspirates in 276 cases (age range: 25–91 years); conv FISH 1007 cases (age range: 26–96 years) - all confirmed PCNs. For cIg FISH the %PC range was 0.3–95%; conv FISH 0.02–95%. With cIg FISH there were 246 (90%) abnormal, 14(5%) normal and 16 (5%) inconclusive results. Of the abnormal cases, 111 (45%) had gains of 1q21 (73 (66%) with 3 copies; 38 (34%) with ≥4 copies + [3+≥4 copies]), 127 (46%) had RB1 deletions (RB1−) or monosomy 13 (−13), and 77 (28%) had ‘other abnormalities' (no 1q21 or 13 abnormalities). For conv FISH there were 448 (44.5%) normal and 559 (55.5%) abnormal cases. Of the abnormal cases, 206 (20.5%) had gains of 1q21 (130 (63%) with 3 copies; 76 (37%) with ≥4 copies + [3+≥4 copies]), 240 (24%) RB1− or −13, and 221 (22%) ‘other abnormalities'. True amplification of 1q21 (CKS1B) [≥7–10 copies] was not observed by cIg or conv FISH. The detection rate (% cases) of each aberration occurring in the 111 1q21 positive cases detected by cIg FISH was: −13 31.9%, CCND1x3 23.9%, t(11;14) 10.9%, t(4;14) 9.4%, TP53− 6.9%, t(14;16) 6.5%, and RB1− 6.2%. For conv FISH it was: −13 8.5%, CCND1x3 6.8%, t(11;14) 2.9%, t(4;14) 2.5%, t(14;16) 1.9%, TP53− 1.8%, and RB1− 1.8%. Statistical analysis showed that the detection of additional aberrations in patients with 1q21 gains was significantly higher by cIg FISH compared to conv FISH (
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
  • 8
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...