ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Publication Date: 1984-06-01
    Description: We have studied the role of factor VIII-von Willebrand factor (FVIII- vWF) in both platelet adherence to subendothelium and ristocetin- induced platelet aggregation using monoclonal antibodies to human FVIII- vWF. Twenty-five monoclonal antibodies were obtained, two of which were directed to the factor VIII moiety of FVIII-vWF; one of these two completely inhibited the procoagulant activity (FVIII:C). The remaining 23 monoclonal antibodies were directed to the von Willebrand factor moiety of FVIII-vWF. The ability of the latter monoclonal antibodies to inhibit platelet adherence to arterial subendothelium was investigated with a perfusion model. According to the number of platelets adhering to the subendothelium, three groups of monoclonal antibodies could be discerned: (A) antibodies not affecting platelet adherence; (B) antibodies that inhibited platelet adherence to the level as observed when von Willebrand's disease plasma was tested; and (C) antibodies that completely inhibited both platelet adherence to subendothelium and ristocetin-induced platelet aggregation. The two antibodies present in group C competed for the same or closely related epitope(s) present on FVIII-vWF. These results demonstrate that a domain is present on the FVIII-vWF molecule that is associated both with ristocetin-induced aggregation and with the ability of FVIII-vWF to support platelet adherence to the subendothelium. Based on these observations, it is concluded that ristocetin-induced binding of FVIII-vWF to platelets reflects, at least in part, a physiologic mechanism regulating the function of FVIII-vWF in primary hemostasis.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1986-01-01
    Description: Various organs, including liver, spleen, heart, lung, kidney, intestines, lymph nodes, pancreas, bone marrow, and thymus, were investigated for the presence of factor VIII-procoagulant antigen (VIIICAg) and factor VIII-related antigen (VIIIRAg), using a panel of monoclonal antibodies directed to factor VIII-von Willebrand factor in combination with a sensitive immunoperoxidase staining technique. In addition to hepatic sinusoidal endothelial cells, the presence of VIIICAg was demonstrated in mononuclear cells sporadically present in lymph nodes, in the alveolar septa of lung, and in the red pulp of spleen. The identity of these mononuclear cells could not be unequivocally determined. Based on morphological criteria, however, it is tentatively concluded that these cells are nonlymphoid and belong to the mononuclear phagocyte system. The presence of VIII-RAg was confined to vascular endothelial cells, hepatic sinusoidal endothelial cells, cells lining the venous sinuses of the red pulp of the spleen, cells lining renal glomeruli and lung capillaries, platelets, and megakaryocytes.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1985-01-01
    Description: A monoclonal antibody directed against the von Willebrand factor moiety (vWF) of factor VIII-von Willebrand factor (FVIII-vWF), which blocks ristocetin-induced platelet aggregation as well as the binding of FVIII- vWF to platelets in the presence of ristocetin, inhibited platelet adherence to human artery subendothelium when present in normal flowing blood. This monoclonal antibody, CLB-RAg 35, inhibited platelet adherence as a function of the shear rate. At wall shear rates below 500 s-1, platelet adherence was not affected, but at higher shear rates platelet adherence was gradually inhibited, reaching an average of 11% of the normal value at 2,500 s-1. Indirect immunofluorescence established the reactivity of CLB-RAg 35 with vWF present in artery subendothelium. Pretreatment of normal vessel walls with this antibody inhibited adherence of platelets in blood from a patient with severe homozygous von Willebrand's disease and in blood from normal individuals. The inhibition was shear-rate dependent and significant at high shear rates (2,500 s-1). By adding increasing amounts of purified FVIII-vWF to normal blood, the inhibition was gradually overcome. These data indicate that vWF present in the vessel wall contributes appreciably to platelet adherence. At high wall shear rates, platelet adherence is mediated virtually completely by both plasma FVIII-vWF and vWF in the vessel wall. At low wall shear rates (below 500 s-1), platelet adherence occurs independent of FVIII-vWF in plasma and vWF in the vessel wall.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1984-06-01
    Description: We have studied the role of factor VIII-von Willebrand factor (FVIII- vWF) in both platelet adherence to subendothelium and ristocetin- induced platelet aggregation using monoclonal antibodies to human FVIII- vWF. Twenty-five monoclonal antibodies were obtained, two of which were directed to the factor VIII moiety of FVIII-vWF; one of these two completely inhibited the procoagulant activity (FVIII:C). The remaining 23 monoclonal antibodies were directed to the von Willebrand factor moiety of FVIII-vWF. The ability of the latter monoclonal antibodies to inhibit platelet adherence to arterial subendothelium was investigated with a perfusion model. According to the number of platelets adhering to the subendothelium, three groups of monoclonal antibodies could be discerned: (A) antibodies not affecting platelet adherence; (B) antibodies that inhibited platelet adherence to the level as observed when von Willebrand's disease plasma was tested; and (C) antibodies that completely inhibited both platelet adherence to subendothelium and ristocetin-induced platelet aggregation. The two antibodies present in group C competed for the same or closely related epitope(s) present on FVIII-vWF. These results demonstrate that a domain is present on the FVIII-vWF molecule that is associated both with ristocetin-induced aggregation and with the ability of FVIII-vWF to support platelet adherence to the subendothelium. Based on these observations, it is concluded that ristocetin-induced binding of FVIII-vWF to platelets reflects, at least in part, a physiologic mechanism regulating the function of FVIII-vWF in primary hemostasis.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1985-01-01
    Description: A monoclonal antibody directed against the von Willebrand factor moiety (vWF) of factor VIII-von Willebrand factor (FVIII-vWF), which blocks ristocetin-induced platelet aggregation as well as the binding of FVIII- vWF to platelets in the presence of ristocetin, inhibited platelet adherence to human artery subendothelium when present in normal flowing blood. This monoclonal antibody, CLB-RAg 35, inhibited platelet adherence as a function of the shear rate. At wall shear rates below 500 s-1, platelet adherence was not affected, but at higher shear rates platelet adherence was gradually inhibited, reaching an average of 11% of the normal value at 2,500 s-1. Indirect immunofluorescence established the reactivity of CLB-RAg 35 with vWF present in artery subendothelium. Pretreatment of normal vessel walls with this antibody inhibited adherence of platelets in blood from a patient with severe homozygous von Willebrand's disease and in blood from normal individuals. The inhibition was shear-rate dependent and significant at high shear rates (2,500 s-1). By adding increasing amounts of purified FVIII-vWF to normal blood, the inhibition was gradually overcome. These data indicate that vWF present in the vessel wall contributes appreciably to platelet adherence. At high wall shear rates, platelet adherence is mediated virtually completely by both plasma FVIII-vWF and vWF in the vessel wall. At low wall shear rates (below 500 s-1), platelet adherence occurs independent of FVIII-vWF in plasma and vWF in the vessel wall.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1986-01-01
    Description: Various organs, including liver, spleen, heart, lung, kidney, intestines, lymph nodes, pancreas, bone marrow, and thymus, were investigated for the presence of factor VIII-procoagulant antigen (VIIICAg) and factor VIII-related antigen (VIIIRAg), using a panel of monoclonal antibodies directed to factor VIII-von Willebrand factor in combination with a sensitive immunoperoxidase staining technique. In addition to hepatic sinusoidal endothelial cells, the presence of VIIICAg was demonstrated in mononuclear cells sporadically present in lymph nodes, in the alveolar septa of lung, and in the red pulp of spleen. The identity of these mononuclear cells could not be unequivocally determined. Based on morphological criteria, however, it is tentatively concluded that these cells are nonlymphoid and belong to the mononuclear phagocyte system. The presence of VIII-RAg was confined to vascular endothelial cells, hepatic sinusoidal endothelial cells, cells lining the venous sinuses of the red pulp of the spleen, cells lining renal glomeruli and lung capillaries, platelets, and megakaryocytes.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...