ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-12
    Description: A paper describes a method of using microwave heating experiments on lunar simulants to determine the mechanism that causes lunar regolith to be such an excellent microwave absorber. The experiments initially compared the effects of sharp particle edges to round particle edges on the heating curves. For most compositions, sharp particle edged samples were more effective in being heated by microwaves than round particle edged materials. However, the experiments also showed an unexpected effect for both types of particles. Upon heating the sample surface above 400 C, the sample experienced some sort of internal structure change that caused it to heat much more efficiently. This enhancement may be associated with the unique microwave volumetric heating that can produce a large temperature gradient within the sample leading to melting of some components at the center of the sample. This new effect that may also be happening in lunar regolith samples is probably the cause of the previously observed enhanced heating of a sample of lunar regolith. Properly designed microwave applicators could heat and solidify the lunar regolith to form roads and building blocks for structures needed on the Moon
    Keywords: Man/System Technology and Life Support
    Type: NPO-48895 , NASA Tech Briefs, July 2013; 35
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-30
    Description: Electronics Boxes with high heat dissipations use a thermal interface material to increase heat transfer to the radiator in a vacuum/space environment. There are lots of materials to choose from, but for Spacecraft applications, there are more than high heat transfer metrics which must be met. Contamination (both particle generation and outgassing), ease of cutting, and removal are just as important metrics in material selection. However, vendor data of material thermal conductance is usually based on a 1" X 1" piece of material under high uniform pressures. Large Electronics boxes almost never have optimal pressures, as they are bolted along the perimeter and leave gaps in the center regions. In order to characterize the relative thermal conductance for large Electronics boxes, an 8" X 8" plate was fabricated to simulate an electronics box bottom and bolted around the perimeter to a cold plate. Various thermal interface materials were inserted between the box and cold plate, and overall thermal conductance's were calculated. A table was generated which compares the full gamut of thermal interface materials for large boxes, from a dry joint to a wet joint. Materials were placed in order of high to low conductance's, so an engineer can compare the benefit of each material in a real-world scenario.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: GSFC-E-DAA-TN70827 , Thermal and Fluids Analysis Workshop (TFAWS 2019); Aug 26, 2019 - Aug 30, 2019; Hampton, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: Due to the unique thermal vacuum testing requirements for a Mars Rover instrument, NASA Goddard developed a low cost, high fidelity thermal control system utilizing Thermal Electric Coolers (TECs) combined with a heat rejection fluid loop to actively control 8 independent payload thermal boundary zones in a simulated Mars pressure vacuum chamber with a Carbon Dioxide atmosphere. These zones could control instrument components to a specific temperature as a function of time to simulate exact temporal flight boundary predictions.The Mars Organic Molecule Analyzer (MOMA) instrument is a dual source (pyrolysis gas chromatograph and laser desorption) mass spectrometer (MS) based package that detects and characterizes organic molecules, as part of ESA's 2020 ExoMars Rover mission to seek the signs of life on Mars.Due to the unique thermal vacuum testing requirements for a Mars Rover instrument, NASA Goddard developed a low cost, high fidelity thermal control system utilizing Thermal Electric Coolers (TECs) combined with a heat rejection fluid loop to actively control 8 independent payload thermal boundary zones in a simulated Mars pressure vacuum chamber with a Carbon Dioxide atmosphere. These zones could control instrument components to a specific temperature as a function of time to simulate exact temporal flight boundary predictions.The Mars Organic Molecule Analyzer (MOMA) instrument is a dual source (pyrolysis gas chromatograph and laser desorption) mass spectrometer (MS) based package that detects and characterizes organic molecules, as part of ESA's 2020 ExoMars Rover mission to seek the signs of life on Mars.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: GSFC-E-DAA-TN62003 , Space Simulation Conference; Nov 05, 2018 - Nov 08, 2018; Annapolis, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...