ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Publication Date: 2019-07-13
    Description: The Apollo missions to the moon showed that lunar dust can hamper astronaut surface activities due to its ability to cling to most surfaces. NASA's Mars exploration landers and rovers have also shown that the problem is equally hard if not harder on Mars. In this paper, we report on our efforts to develop and electrodynamic dust shield to prevent the accumulation of dust on surfaces and to remove dust already adhering to those surfaces. The parent technology for the electrodynamic dust shield, developed in the 1970s, has been shown to lift and transport charged and uncharged particles using electrostatic and dielectrophoretic forces. This technology has never been applied for space applications on Mars or the moon due to electrostatic breakdown concerns. In this paper, we show that an appropriate design can prevent the electrostatic breakdown at the low Martian atmospheric pressures. We are also able to show that uncharged dust can be lifted and removed from surfaces under simulated Martian environmental conditions. This technology has many potential benefits for removing dust from visors, viewports and many other surfaces as well as from solar arrays. We have also been able to develop a version of the electrodynamic dust shield working under. hard vacuum conditions. This version should work well on the moon.
    Keywords: Lunar and Planetary Science and Exploration
    Type: KSC-2006-125 , 57th International Astronautical Congress conference; Oct 02, 2006 - Oct 06, 2006; Valencia; Spain
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: The primary objective of this project is to understand the consequences of glow electrical discharges on the chemistry and biology of Mars. The possibility was raised some time ago that the absence of organic material and carbonaceous matter in the Martian soil samples studied by the VikinG Landers might be due in part to an intrinsic atmospheric mechanism such as glow discharge. The high probability for dust interactions during Martian dust storms and dust devils, combined with the cold, dry climate of Mars most likely results in airborne dust that is highly charged. Such high electrostatic potentials generated during dust storms on Earth are not permitted in the low-pressure CO2 environment on Mars; therefore electrostatic energy released in the form of glow discharges is a highly likely phenomenon. Since glow discharge methods are used for cleaning and sterilizing surfaces throughout industry, the idea that dust in the Martian atmosphere undergoes a cleaning action many times over geologic time scales appears to be a plausible one.
    Keywords: Lunar and Planetary Science and Exploration
    Type: KSC-2006-024 , Lunar and Planetary Science Conference; Mar 13, 2013 - Mar 17, 2013; League City, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...