ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Physiologia plantarum 118 (2003), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Chara fragilis possesses microbodies with a remarkably large size of up to 2 µm in diameter. Many of the organelles contain huge nucleoids of amorphous material or paracrystalline inclusions. After isolation of the organelles by gradient centrifugation the specific density of the microbodies was determined to be 1.25 g cm−3. Catalase, glycolate oxidase and hydroxypyruvate reductase as well as enzymes of the fatty acid β-oxidation pathway were demonstrated to be constituents of the microbodies in Chara indicating that they are similar to those in green leaves. The data obtained are in agreement with the view that the Charophyceae and especially the algae in the subgroup of Charales are very closely related to the land plants.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK; Malden, USA : Munksgaard International Publishers
    Physiologia plantarum 123 (2005), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Using 14C-labelled substrates, the succession of the single steps in the glycolate metabolism was investigated in Mougeotia scalaris and Eremosphaera viridis, which, within the group of green algae, are representatives of the evolutionary lines of Charophyta and Chlorophyta, respectively. In both algae the same metabolites are formed as in higher plants, although in Eremosphaera, which in contrast to Mougeotia does not possess leaf peroxisomes, all reactions are exclusively mitochondrial. Concomitant with the oxidation of glycolate, the synthesis of ATP was demonstrated in Eremosphaera. Formation of tartronic semi-aldehyde or other products different from those in land plants could not be demonstrated in either of these algae. Excretion of glycolate by Mougeotia and Eremosphaera is enhanced by decreasing the CO2 concentration as well as by increasing the light intensity, but is completely stopped about 14 h later. Whereas increasing enzyme activities of the glycolate pathway apparently reduces glycolate excretion in Mougeotia, activation of CO2 pumps seems to be the dominant reaction to prevent glycolate excretion in Eremosphaera. Mesostigma viride is one of the phylogenetically oldest algae in the group of Charophyceae. As this alga has already been demonstrated to contain microbodies with enzymes of leaf peroxisomes, the peroxisomal glycolate pathway must have originated at a very early stage. Surprisingly, the organelles from Mesostigma contain also the glyoxysomal marker enzyme isocitrate lyase suggesting these microbodies to be prototypes from which both glyoxysomes and leaf peroxisomes evolved.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...