ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Publication Date: 2020-04-22
    Description: The purpose of the present investigation was to examine the acute effects of whole body vibration (WBV) on isometric mid-thigh pull force–time curve (FTC) characteristics. Eleven recreationally trained subjects were randomly assigned to three treatment conditions: sham no vibration protocol (T1), vibration protocol 30 Hz 2–4 mm amplitude (T2), and vibration protocol 30 Hz 2–4 mm (T3). After completing a standardized warm-up, the subject stood on a vibration platform with the knee at a 120° angle and performed one of the three interventions. Each treatment condition required the subject to stand on the platform for thirty-second treatments, each separated by thirty seconds of recovery. Five minutes after the completion of the treatment conditions, the subjects performed the isometric mid-thigh pull. All FTCs were analyzed with standardized procedures for peak force (PF) and peak rate of force development (PRFD). A 1 × 3 repeated measures analysis of variance (ANOVA) was used to compare the three treatments. Additionally, coefficients of variance (CV), as well as intraclass and interclass correlations, were performed. There were no significant differences (p 〉 0.05) for any of the FTC analyses performed in this investigation. The CV and the 95% confidence interval (CI) indicate that the WBV protocol resulted in trivial changes in PF and beneficial changes in PRFD. A 30 Hz 2–4 mm amplitude WBV does not result in a significant increase in isometric mid-thigh pull performance.
    Electronic ISSN: 2571-631X
    Topics: Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...