ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
  • 2
    Publication Date: 2020-10-22
    Print ISSN: 0067-0049
    Electronic ISSN: 1538-4365
    Topics: Physics
    Published by Institute of Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-06-11
    Description: My project primarily focused on the evaluation of several candidate converters to determine which provides the best overall performance for the needs of the DSCC Downlink Array (DDA). Of particular concern was the flatness of the gain and group delay of the converter over the Intermediate Frequency (IF) bandwidth, as excessive variation interferes with the beam forming that occurs when combining the signals from many antennas. In addition, converter nonlinearity and noise were evaluated as these could limit the DDA's ability to resolve weak signals, particularly in the presence of large interferers. The sensitivity of the noise at the output of the converters due to noise in the power supplies and jitter in the analog-to-digital converters (ADC) and the reference clock were also evaluated. Specifically, I worked with various high speed (1280 to 2000 megahertz sampling clock) ADCs.
    Keywords: Space Communications, Spacecraft Communications, Command and Tracking; Electronics and Electrical Engineering
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Communications and Radar
    Type: IEEE Aerospace Conference; Mar 03, 2012 - Mar 10, 2012; Montana, MT; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: Deep Space communications typically utilize closed loop receivers and Binary Phase Shift Keying (BPSK) or Quadrature Phase Shift Keying (QPSK). Critical spacecraft events include orbit insertion and entry, descent, and landing.---Low gain antennas--〉 low signal -to-noise-ratio.---High dynamics such as parachute deployment or spin --〉 Doppler shift. During critical events, open loop receivers and Multiple Frequency Shift Keying (MFSK) used. Entry, Descent, Landing (EDL) Data Analysis (EDA) system detects tones in real-time.
    Keywords: Lunar and Planetary Science and Exploration
    Type: IEEE Aerospace Conference; Mar 03, 2012 - Mar 10, 2012; Big Sky, MT; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-12
    Description: In this innovation, a digital downconverter has been created that produces a large (16 or greater) number of output channels of smaller bandwidths. Additionally, this design has the flexibility to tune each channel independently to anywhere in the input bandwidth to cover a wide range of output bandwidths (from 32 MHz down to 1 kHz). Both the flexibility in channel frequency selection and the more than four orders of magnitude range in output bandwidths (decimation rates from 32 to 640,000) presented significant challenges to be solved. The solution involved breaking the digital downconversion process into a two-stage process. The first stage is a 2 oversampled filter bank that divides the whole input bandwidth as a real input signal into seven overlapping, contiguous channels represented with complex samples. Using the symmetry of the sine and cosine functions in a similar way to that of an FFT (fast Fourier transform), this downconversion is very efficient and gives seven channels fixed in frequency. An arbitrary number of smaller bandwidth channels can be formed from second-stage downconverters placed after the first stage of downconversion. Because of the overlapping of the first stage, there is no gap in coverage of the entire input bandwidth. The input to any of the second-stage downconverting channels has a multiplexer that chooses one of the seven wideband channels from the first stage. These second-stage downconverters take up fewer resources because they operate at lower bandwidths than doing the entire downconversion process from the input bandwidth for each independent channel. These second-stage downconverters are each independent with fine frequency control tuning, providing extreme flexibility in positioning the center frequency of a downconverted channel. Finally, these second-stage downconverters have flexible decimation factors over four orders of magnitude The algorithm was developed to run in an FPGA (field programmable gate array) at input data sampling rates of up to 1,280 MHz. The current implementation takes a 1,280-MHz real input, and first breaks it up into seven 160-MHz complex channels, each spaced 80 MHz apart. The eighth channel at baseband was not required for this implementation, and led to more optimization. Afterwards, 16 second stage narrow band channels with independently tunable center frequencies and bandwidth settings are implemented A future implementation in a larger Xilinx FPGA will hold up to 32 independent second-stage channels.
    Keywords: Man/System Technology and Life Support
    Type: NPO-47431 , NASA Tech Briefs, July 2013; 12-13
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-08-24
    Description: Cold Atom Laboratory (CAL) is a facility that will enable scientists to study ultra-cold quantum gases in a microgravity environment on the International Space Station (ISS) beginning in 2016. The primary science data for each experiment consists of two images taken in quick succession. The first image is of the trapped cold atoms and the second image is of the background. The two images are subtracted to obtain optical density. These raw Level 0 atom and background images are processed into the Level 1 optical density data product, and then into the Level 2 data products: atom number, Magneto-Optical Trap (MOT) lifetime, magnetic chip-trap atom lifetime, and condensate fraction. These products can also be used as diagnostics of the instrument health. With experiments being conducted for 8 hours every day, the amount of data being generated poses many technical challenges, such as downlinking and managing the required data volume. A parallel processing design is described, implemented, and benchmarked. In addition to optimizing the data pipeline, accuracy and speed in producing the Level 1 and 2 data products is key. Algorithms for feature recognition are explored, facilitating image cropping and accurate atom number calculations.
    Keywords: Documentation and Information Science; Computer Programming and Software
    Type: IEEE Aerospace Conference; Mar 07, 2015 - Mar 14, 2015; Big Sky, MT; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-12
    Description: An upgrade to the very-long-baseline-interferometry (VLBI) science receiver (VSR) a radio receiver used in NASA's Deep Space Network (DSN) is currently being implemented. The current VSR samples standard DSN intermediate- frequency (IF) signals at 256 MHz and after digital down-conversion records data from up to four 16-MHz baseband channels. Currently, IF signals are limited to the 265-to-375-MHz range, and recording rates are limited to less than 80 Mbps. The new digital front end, denoted the Wideband VSR, provides improvements to enable the receiver to process wider bandwidth signals and accommodate more data channels for recording. The Wideband VSR utilizes state-of-the-art commercial analog-to-digital converter and field-programmable gate array (FPGA) integrated circuits, and fiber-optic connections in a custom architecture. It accepts IF signals from 100 to 600 MHz, sampling the signal at 1.28 GHz. The sample data are sent to a digital processing module, using a fiber-optic link for isolation. The digital processing module includes boards designed around an Advanced Telecom Computing Architecture (ATCA) industry-standard backplane. Digital signal processing implemented in FPGAs down-convert the data signals in up to 16 baseband channels with programmable bandwidths from 1 kHz to 16 MHz. Baseband samples are transmitted to a computer via multiple Ethernet connections allowing recording to disk at rates of up to 1 Gbps.
    Keywords: Man/System Technology and Life Support
    Type: NPO-41191 , NASA Tech Briefs, September 2006; 63
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-12
    Description: A recently developed breadboard version of an advanced signal processor for arraying many antennas in NASA s Deep Space Network (DSN) can accept inputs in a 500-MHz-wide frequency band from six antennas. The next breadboard version is expected to accept inputs from 16 antennas, and a following developed version is expected to be designed according to an architecture that will be scalable to accept inputs from as many as 400 antennas. These and similar signal processors could also be used for combining multiple wide-band signals in non-DSN applications, including very-long-baseline interferometry and telecommunications. This signal processor performs functions of a wide-band FX correlator and a beam-forming signal combiner. [The term "FX" signifies that the digital samples of two given signals are fast Fourier transformed (F), then the fast Fourier transforms of the two signals are multiplied (X) prior to accumulation.] In this processor, the signals from the various antennas are broken up into channels in the frequency domain (see figure). In each frequency channel, the data from each antenna are correlated against the data from each other antenna; this is done for all antenna baselines (that is, for all antenna pairs). The results of the correlations are used to obtain calibration data to align the antenna signals in both phase and delay. Data from the various antenna frequency channels are also combined and calibration corrections are applied. The frequency-domain data thus combined are then synthesized back to the time domain for passing on to a telemetry receiver
    Keywords: Man/System Technology and Life Support
    Type: NPO-43646 , NASA Tech Briefs, March 2008; 6
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-01-07
    Description: No abstract available
    Keywords: Communications and Radar
    Type: JPL-CL-16-3516 , U.S. Radio/Millimeter/Submillimeter Science Futures; Aug 03, 2016 - Aug 05, 2016; Baltimore, MD; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...