ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Publication Date: 2020-07-07
    Description: Exergames have been recommended as alternative ways to increase the health benefits of physical exercise. However, energy system contributions (phosphagen, glycolytic, and oxidative) of exergames in specific age groups remain unclear. The purpose of this study was to investigate the contributions of three energy systems and metabolic profiles in specific age groups during exergames. Seventy-four healthy males and females participated in this study (older adults, n = 26: Age of 75.4 ± 4.4 years, body mass of 59.4 ± 8.7 kg, height of 157.2 ± 8.6 cm; adults, n = 24: Age of 27.8 ± 3.3 years, body mass of 73.4 ± 17.8 kg, height of 170.9 ± 11.9 cm; and adolescents, n = 24: Age of 14 ± 0.8 years, body mass of 71.3 ± 11.5 kg, height of 173.3 ± 5.2 cm). To evaluate the demands of different energy systems, all participants engaged in exergames named Action-Racing. Exergames protocol comprised whole-body exercises such as standing, sitting, stopping, jumping, and arm swinging. During exergames, mean heart rate (HRmean), peak heart rate (HRpeak), mean oxygen uptake (VO2mean), peak oxygen uptake (VO2peak), peak lactate (Peak La−), difference in lactate (ΔLa−), phosphagen (WPCr), glycolytic (WLa−), oxidative (WAER), and total energy demands (WTotal) were analyzed. The contribution of the oxidative energy system was higher than that of the phosphagen or glycolytic energy system (65.9 ± 12% vs. 29.5 ± 11.1% or 4.6 ± 3.3%, both p 〈 0.001). The contributions of the total energy demands and oxidative system in older adults were significantly lower than those in adults and adolescents (72.1 ± 28 kJ, p = 0.028; 70.3 ± 24.1 kJ, p = 0.024, respectively). The oxidative energy system was predominantly used for exergames applied in the current study. In addition, total metabolic work in older adults was lower than that in adolescents and adults. This was due to a decrease in the oxidative energy system. For future studies, quantification of intensity and volume is needed to optimize exergames. Such an approach plays a crucial role in encouraging physical activity in limited spaces.
    Print ISSN: 1661-7827
    Electronic ISSN: 1660-4601
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-03-05
    Description: This study aimed to evaluate the effects of warm-up intensity on energetic contribution and performance during a 100-m sprint. Ten young male sprinters performed 100-m sprints following both a high-intensity warm-up (HIW) and a low-intensity warm-up (LIW). Both the HIW and LIW were included in common baseline warm-ups and interventional warm-ups (eight 60-m runs, HIW; 60 to 95%, LIW; 40% alone). Blood lactate concentration [La−], time trial, and oxygen uptake (VO2) were measured. The different energy system contribution was calculated by using physiological variables. [La−1]Max following HIW was significantly higher than in LIW (11.86 ± 2.52 vs. 9.24 ± 1.61 mmol·L−1; p 〈 0.01, respectively). The 100-m sprint time trial was not significantly different between HIW and LIW (11.83 ± 0.57 vs. 12.10 ± 0.63 s; p 〉 0.05, respectively). The relative (%) phosphagen system contribution was higher in the HIW compared to the LIW (70 vs. 61%; p 〈 0.01, respectively). These results indicate that an HIW increases phosphagen and glycolytic system contributions as compared to an LIW for the 100-m sprint. Furthermore, an HIW prior to short-term intense exercise has no effect on a 100-m sprint time trial; however, it tends to improve times (decreased 100-m time trial; −0.27 s in HIW vs. LIW).
    Electronic ISSN: 2079-7737
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...