ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
  • 2
    Publication Date: 2019-04-26
    Description: Xylitol is a five-carbon polyol of economic interest that can be produced by microbial xylose reduction from renewable resources. The current study sought to investigate the potential of two yeast strains, isolated from Brazilian Cerrado biome, in the production of xylitol as well as the genomic characteristics that may impact this process. Xylose conversion capacity by the new isolates Spathaspora sp. JA1 and Meyerozyma caribbica JA9 was evaluated and compared with control strains on xylose and sugarcane biomass hydrolysate. Among the evaluated strains, Spathaspora sp. JA1 was the strongest xylitol producer, reaching product yield and productivity as high as 0.74 g/g and 0.20 g/(L.h) on xylose, and 0.58 g/g and 0.44 g/(L.h) on non-detoxified hydrolysate. Genome sequences of Spathaspora sp. JA1 and M. caribbica JA9 were obtained and annotated. Comparative genomic analysis revealed that the predicted xylose metabolic pathway is conserved among the xylitol-producing yeasts Spathaspora sp. JA1, M. caribbica JA9 and Meyerozyma guilliermondii, but not in Spathaspora passalidarum, an efficient ethanol-producing yeast. Xylitol-producing yeasts showed strictly NADPH-dependent xylose reductase and NAD+-dependent xylitol-dehydrogenase activities. This imbalance of cofactors favors the high xylitol yield shown by Spathaspora sp. JA1, which is similar to the most efficient xylitol producers described so far.
    Print ISSN: 1567-1356
    Electronic ISSN: 1567-1364
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: As a laboratory for scientific research, the International Space Station has been in Low Earth Orbit for nearly 20 years and is expected to be on-orbit for another 10 years. The ISS has been maintaining a relatively pristine contamination environment for science payloads. Materials outgassing induced contamination is currently the dominant source for sensitive surfaces on ISS and modeling the outgassing rate decay over a 20 to 30 year period is challenging. Materials outgassing is described herein as a diffusion-reaction process using ASTM E 1559 rate data. The observation of -1/2 (diffusion) or non-integers (reaction limited) as rate decay exponents for common ISS materials indicate classical reaction kinetics is unsatisfactory in modeling materials outgassing. Non-randomness of reactant concentrations at the interface is the source of this deviation from classical reaction kinetics. A diffusion limited decay was adopted as the result of the correlation of the contaminant layer thicknesses on returned ISS hardware, the existence of high outgassing silicone exhibiting near diffusion limited decay, and the confirmation of non-depleted material after ten years in the Low Earth Orbit.Keywords: Materials Outgassing, ASTM E 1559, Reaction Kinetics, Diffusion, Space Environments Effects, Contamination
    Keywords: Chemistry and Materials (General)
    Type: JSC-CN-36552 , SPIE 2016; Aug 30, 2016 - Sep 01, 2016; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: The International Space Station (ISS) is an on-orbit platform for science utilization in low Earth orbit with multiple sites for external payloads with exposure to the natural and induced environments. Contamination is one of the induced environments that can impact performance, mission success and science utilization on the vehicle. This paper describes the external contamination control requirements and integration process for externally mounted payloads on the ISS. The external contamination control requirements are summarized and a description of the integration and verification process is detailed to guide payload developers in the certification process of attached payloads on the vehicle. A description of the required data certification deliverables covers the characterization of contamination sources. Such characterization includes identification, usage and operational data for each class of contamination source. Classes of external contamination sources covered are vacuum exposed materials, sources of leakage, vacuum venting and thrusters. ISS system level analyses are conducted by the ISS Space Environments Team to certify compliance with external contamination control requirements. This paper also addresses the ISS induced contamination environment at attached payload sites, both at the requirements level as well as measurements made on ISS.
    Keywords: Astronautics (General)
    Type: JSC-CN-26920 , 12th International Symposium on Materials in the Space Environment (ISMSE-12); Sep 24, 2012 - Sep 28, 2012; Noordwijk; Netherlands
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: The International Space Station (ISS) is an on-orbit platform for science utilization in low Earth orbit. The induced contamination environment can impact performance, mission success, and science utilization. Cargo and crew vehicles visiting the ISS represent significant sources of contamination. The Space Environments Team of the ISS Program Office has developed visiting vehicle requirements and methodologies to address the increasingly complex challenge of integrating multiple visiting vehicles while maintaining overall ISS contamination control requirements. The external contamination control requirements are summarized and the integration and verification process is described along with required data deliverables. Contamination characterization data deliverables address vacuum-exposed materials, thrusters, vacuum venting, and particulate releases. Visiting vehicle external contamination analyses are conducted by the ISS Space Environments Team to certify compliance with external contamination control requirements. Unpressurized cargo contamination analyses are also performed to characterize induced contamination to payloads while in transit to ISS. Efforts to confirm the visiting vehicle contamination modeling and analysis process based on on-orbit data are discussed.
    Keywords: Space Transportation and Safety
    Type: JSC-E-DAA-TN60752 , International Symposium on Materials in the Space Environment; Oct 01, 2018 - Oct 05, 2018; Biarritz; France
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: NASA s activities to prepare for Flight LF1 (STS-114) included development of a method to repair the Thermal Protection System (TPS) of the Orbiter s leading edge should it be damaged during ascent by impacts from foam, ice, etc . Reinforced Carbon-Carbon (RCC) is used for the leading edge TPS. The repair material that was developed is named Non- Oxide Adhesive eXperimental (NOAX). NOAX is an uncured adhesive material that acts as an ablative repair material. NOAX completes curing during the Orbiter s descent. The Thermal Protection System (TPS) Detailed Test Objective 848 (DTO 848) performed on Flight LF1 (STS-114) characterized the working life, porosity void size in a micro-gravity environment, and the on-orbit performance of the repairs to pre-damaged samples. DTO 848 is also scheduled for Flight ULF1.1 (STS-121) for further characterization of NOAX on-orbit performance. Due to the high material outgassing rates of the NOAX material and concerns with contamination impacts to optically sensitive surfaces, ASTM E 1559 outgassing tests were performed to determine NOAX condensable outgassing rates as a function of time and temperature. Sensitive surfaces of concern include the Extravehicular Mobility Unit (EMU) visor, cameras, and other sensors in proximity to the experiment during the initial time after application. This paper discusses NOAX outgassing characteristics, how the amount of deposition on optically sensitive surfaces while the NOAX is being manipulated on the pre-damaged RCC samples was determined by analysis, and how flight rules were developed to protect those optically sensitive surfaces from excessive contamination where necessary.
    Keywords: Spacecraft Design, Testing and Performance
    Type: 44th Aerospace Sciences Meeting; Jan 09, 2006 - Jan 12, 2006; Reno, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: The International Space Station (ISS) is the largest and most complex onorbit platform for space science utilization in low Earth orbit. Multiple sites for external payloads, with exposure to the associated natural and induced environments, are available to support a variety of space science utilization objectives. Contamination is one of the induced environments that can impact performance, mission success and science utilization on the vehicle. The ISS has been designed, built and integrated with strict contamination requirements to provide low levels of induced contamination on external payload assets. This paper addresses the ISS induced contamination environment at attached payload sites, both at the requirements level as well as measurements made on returned hardware, and contamination forecasting maps being generated to support external payload topology studies and science utilization.
    Keywords: Space Sciences (General)
    Type: JSC-CN-30494 , Annual International Space Station Research and Development Conference; Jun 17, 2014 - Jun 19, 2014; Chicago, IL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-08-15
    Description: We present the results of a laboratory test to determine the effects of bulk deposited, DC-704 silicone contaminant film on the transmittance properties of an anti-reflective (AR) coated fused silica optical substrate. Testing and optical measurements were performed in vacuum in the Boeing Combined Effects Test Facility (CETF). The test and measurement procedures are described herein. Measurement results are presented showing the change in transmittance characteristics as a function of contaminant deposit thickness and vacuum ultra-violet (vuv) exposure levels. Measurement results show an initial degradation in the transmittance of the contaminated sample. This is followed by a partial recovery in sample transmittance as the sample is exposed to additional VUV radiation. Transmittance results also show a loss of transmission in the ultraviolet portion of the spectrum and an increase in transmission in the infrared portion of the spectrum. These transmittance results are characteristic of thin-film interference effects. Thin-film analyses indicate that some of the observed transmittance results can be successfully modeled, but only if the contaminant film is assumed to be SiO2 rather than DC-704 silicone. Post-test Scanning Electron Microscope (SEM) scans of the test sample indicate the formation of contaminant islands and the presence of a thin uniform coating of contaminant deposit on the sample
    Keywords: Composite Materials
    Type: 49th SPIE COnference on Optical Science and Technology; Aug 02, 2004 - Aug 06, 2004; Denver, CO; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...