ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Monthly Weather Review 144 (2016): 861-875, doi:10.1175/MWR-D-14-00303.1.
    Description: Particle filtering methods for data assimilation may suffer from the “curse of dimensionality,” where the required ensemble size grows rapidly as the dimension increases. It would, therefore, be useful to know a priori whether a particle filter is feasible to implement in a given system. Previous work provides an asymptotic relation between the necessary ensemble size and an exponential function of , a statistic that depends on observation-space quantities and that is related to the system dimension when the number of observations is large; for linear, Gaussian systems, the statistic can be computed from eigenvalues of an appropriately normalized covariance matrix. Tests with a low-dimensional system show that these asymptotic results remain useful when the system is nonlinear, with either the standard or optimal proposal implementation of the particle filter. This study explores approximations to the covariance matrices that facilitate computation in high-dimensional systems, as well as different methods to estimate the accumulated system noise covariance for the optimal proposal. Since may be approximated using an ensemble from a simpler data assimilation scheme, such as the ensemble Kalman filter, the asymptotic relations thus allow an estimate of the ensemble size required for a particle filter before its implementation. Finally, the improved performance of particle filters with the optimal proposal, relative to those using the standard proposal, in the same low-dimensional system is demonstrated.
    Description: Slivinski was supported by the NSF through Grants DMS-0907904 and DMS-1148284, by ONR through DOD (MURI) Grant N000141110087, and by NCAR’s Advanced Study Program during a collaborative visit to NCAR.
    Description: 2016-05-11
    Keywords: Mathematical and statistical techniques ; Statistical techniques ; Models and modeling ; Data assimilation ; Ensembles ; Nonlinear models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-08-01
    Description: Safety compliance issues for operational studies of the atmosphere with balloons require quantifying risks associated with descent and developing strategies to reduce the uncertainties at the location of the touchdown point. Trajectory forecasts are typically computed from weather forecasts produced by an operational center, for example, the European Centre for Medium-Range Weather Forecasts. This study uses past experiments to investigate strategies for improving these forecasts. Trajectories for open stratospheric balloon (OSB) short-term flights are computed using mesoscale simulations with the Weather and Research Forecasting (WRF) Model initialized with ECMWF operational forecasts and are assimilated with radio soundings using the Data Assimilation Research Testbed (DART) ensemble Kalman filter, for three case studies during the Strapolété 2009 campaign in Sweden. The results are very variable: in one case, the error in the final simulated position is reduced by 90% relative to the forecast using the ECMWF winds, while in another case the forecast is hardly improved. Nonetheless, they reveal the main source of forecasting error: during the ceiling phase, errors due to unresolved inertia–gravity waves accumulate as the balloon continuously experiences one phase of a wave for a few hours, whereas they essentially average out during the ascent and descent phases, when the balloon rapidly samples through whole wave packets. This sensitivity to wind during the ceiling phase raises issues regarding the feasibility of such forecasts and the observations that would be needed. The ensemble spread is also analyzed, and it is noted that the initial ensemble perturbations should probably be improved in the future for better forecasts.
    Print ISSN: 0739-0572
    Electronic ISSN: 1520-0426
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-07-28
    Description: Under assumptions of horizontal homogeneity and isotropy, one may derive relations between rotational or divergent kinetic energy spectra and velocities along one-dimensional tracks, such as might be measured by aircraft. Two recent studies, differing in details of their implementation, have applied these relations to the Measurement of Ozone and Water Vapor by Airbus In-Service Aircraft (MOZAIC) dataset and reached different conclusions with regard to the mesoscale ratio of divergent to rotational kinetic energy. In this study the accuracy of the method is assessed using global atmospheric simulations performed with the Model for Prediction Across Scales, where the exact decomposition of the horizontal winds into divergent and rotational components may be easily computed. For data from the global simulations, the two approaches yield similar and very accurate results. Errors are largest for the divergent component on synoptic scales, which is shown to be related to a very dominant rotational mode. The errors are, in particular, sufficiently small so that the mesoscale ratio of divergent to rotational kinetic energy can be derived correctly. The proposed technique thus provides a strong observational check of model results with existing large commercial aircraft datasets. The results do, however, show a significant dependence on the height and latitude ranges considered, and the disparate conclusions drawn from previous applications to MOZAIC data may result from the use of different subsets of the data.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-02-12
    Description: Particle filtering methods for data assimilation may suffer from the “curse of dimensionality,” where the required ensemble size grows rapidly as the dimension increases. It would, therefore, be useful to know a priori whether a particle filter is feasible to implement in a given system. Previous work provides an asymptotic relation between the necessary ensemble size and an exponential function of , a statistic that depends on observation-space quantities and that is related to the system dimension when the number of observations is large; for linear, Gaussian systems, the statistic can be computed from eigenvalues of an appropriately normalized covariance matrix. Tests with a low-dimensional system show that these asymptotic results remain useful when the system is nonlinear, with either the standard or optimal proposal implementation of the particle filter. This study explores approximations to the covariance matrices that facilitate computation in high-dimensional systems, as well as different methods to estimate the accumulated system noise covariance for the optimal proposal. Since may be approximated using an ensemble from a simpler data assimilation scheme, such as the ensemble Kalman filter, the asymptotic relations thus allow an estimate of the ensemble size required for a particle filter before its implementation. Finally, the improved performance of particle filters with the optimal proposal, relative to those using the standard proposal, in the same low-dimensional system is demonstrated.
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-02-01
    Description: Accurate predictions in numerical weather models depend on the ability to accurately represent physical processes across a wide range of scales. This paper evaluates the utility of model time tendencies, averaged over many forecasts at a given lead time, to diagnose systematic forecast biases in the Advanced Research version of the Weather Research and Forecasting (WRF) Model during the 2010 North Atlantic hurricane season using continuously cycled ensemble data assimilation (DA). Erroneously strong low-level heating originates from the planetary boundary layer parameterization as a consequence of using fixed sea surface temperatures, impacting the upward surface sensible heat fluxes. Warm temperature bias is observed with a magnitude 0.5 K in a deep tropospheric layer centered 700 hPa, originating primarily from the Kain–Fritsch convective parameterization. This study is the first to diagnose systematic forecast bias in a limited-area mesoscale model using its forecast tendencies. Unlike global models where relatively fewer time steps typically encompass a DA cycling period, averaging all short-term forecast tendencies can require potentially large data. It is shown that 30-min averaging intervals can sufficiently represent the systematic model bias in this modeling configuration when initializing forecasts from an ensemble member that is generated using a DA system with an identical model configuration. However, the number of time steps before model error begins to dominate initial condition (IC) errors may vary between modeling configurations. Model and IC error are indistinguishable in short-term forecasts when initialized from the ensemble mean, a global analysis from a different model, and an ensemble member using a different parameterization.
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-08-01
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-12-01
    Description: The potential for storm surge to cause extensive property damage and loss of life has increased urgency to more accurately predict coastal flooding associated with landfalling tropical cyclones. This work investigates the sensitivity of coastal inundation from storm tide (surge + tide) to four hurricane parameters—track, intensity, size, and translation speed—and the sensitivity of inundation forecasts to errors in forecasts of those parameters. An ensemble of storm tide simulations is generated for three storms in the Gulf of Mexico, by driving a storm surge model with best track data and systematically generated perturbations of storm parameters from the best track. The spread of the storm perturbations is compared to average errors in recent operational hurricane forecasts, allowing sensitivity results to be interpreted in terms of practical predictability of coastal inundation at different lead times. Two types of inundation metrics are evaluated: point-based statistics and spatially integrated volumes. The practical predictability of surge inundation is found to be limited foremost by current errors in hurricane track forecasts, followed by intensity errors, then speed errors. Errors in storm size can also play an important role in limiting surge predictability at short lead times, due to observational uncertainty. Results show that given current mean errors in hurricane forecasts, location-specific surge inundation is predictable for as little as 12–24 h prior to landfall, less for small-sized storms. The results also indicate potential for increased surge predictability beyond 24 h for large storms by considering a storm-following, volume-integrated metric of inundation.
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-10-03
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-12-01
    Description: During the last few decades, scientific capabilities for understanding and predicting weather and climate risks have advanced rapidly. At the same time, technological advances, such as the Internet, mobile devices, and social media, are transforming how people exchange and interact with information. In this modern information environment, risk communication, interpretation, and decision-making are rapidly evolving processes that intersect across space, time, and society. Instead of a linear or iterative process in which individual members of the public assess and respond to distinct pieces of weather forecast or warning information, this article conceives of weather prediction, communication, and decision-making as an interconnected dynamic system. In this expanded framework, information and uncertainty evolve in conjunction with people’s risk perceptions, vulnerabilities, and decisions as a hazardous weather threat approaches; these processes are intertwined with evolving social interactions in the physical and digital worlds. Along with the framework, the article presents two interdisciplinary research approaches for advancing the understanding of this complex system and the processes within it: analysis of social media streams and computational natural–human system modeling. Examples from ongoing research are used to demonstrate these approaches and illustrate the types of new insights they can reveal. This expanded perspective together with research approaches, such as those introduced, can help researchers and practitioners understand and improve the creation and communication of information in atmospheric science and other fields.
    Print ISSN: 0003-0007
    Electronic ISSN: 1520-0477
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-08-01
    Description: Since its initial release in 2000, the Weather Research and Forecasting (WRF) Model has become one of the world’s most widely used numerical weather prediction models. Designed to serve both research and operational needs, it has grown to offer a spectrum of options and capabilities for a wide range of applications. In addition, it underlies a number of tailored systems that address Earth system modeling beyond weather. While the WRF Model has a centralized support effort, it has become a truly community model, driven by the developments and contributions of an active worldwide user base. The WRF Model sees significant use for operational forecasting, and its research implementations are pushing the boundaries of finescale atmospheric simulation. Future model directions include developments in physics, exploiting emerging compute technologies, and ever-innovative applications. From its contributions to research, forecasting, educational, and commercial efforts worldwide, the WRF Model has made a significant mark on numerical weather prediction and atmospheric science.
    Print ISSN: 0003-0007
    Electronic ISSN: 1520-0477
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...