ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-27
    Description: The Intelligent Flight Control System (IFCS) project at the NASA Dryden Flight Research Center, Edwards AFB, CA, has been investigating the use of neural network based adaptive control on a unique NF-15B test aircraft. The IFCS neural network is a software processor that stores measured aircraft response information to dynamically alter flight control gains. In 2006, the neural network was engaged and allowed to learn in real time to dynamically alter the aircraft handling qualities characteristics in the presence of actual aerodynamic failure conditions injected into the aircraft through the flight control system. The use of neural network and similar adaptive technologies in the design of highly fault and damage tolerant flight control systems shows promise in making future aircraft far more survivable than current technology allows. This paper will present the results of the IFCS flight test program conducted at the NASA Dryden Flight Research Center in 2006, with emphasis on challenges encountered and lessons learned.
    Keywords: Aircraft Stability and Control
    Type: SETP 50th Symposium & Banquet; 27-30 Sept. 2006; Anaheim, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-27
    Description: NASA-Ames' Highly Integrated Digital Electronic Control (HIDEC) flight test program aims to develop fully integrated airframe, propulsion, and flight control systems. The HIDEC F-15 adaptive engine control system flight test program has demonstrated that significant performance improvements are obtainable through the retention of stall-free engine operation throughout the aircraft flight and maneuver envelopes. The greatest thrust increase was projected for the medium-to-high altitude flight regime at subsonic speed which is of such importance to air combat. Adaptive engine control systems such as the HIDEC F-15's can be used to upgrade the performance of existing aircraft without resort to expensive reengining programs.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: 1987 report to the aerospace profession; Sept. 23-26, 1987; Beverly Hills, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: Gulfstream Aerospace has long been interested in the development of an economically viable supersonic business jet (SBJ). A design requirement for such an aircraft is the ability for unrestricted supersonic flight over land. Although independent studies continue to substantiate that a market for a SBJ exists, regulatory and public acceptance challenges still remain for supersonic operation over land. The largest technical barrier to achieving this goal is sonic boom attenuation. Gulfstream's attention has been focused on fundamental research into sonic boom suppression for several years. This research was conducted in partnership with the NASA Aeronautics Research Mission Directorate (ARMD) supersonic airframe cruise efficiency technical challenge. The Quiet Spike, a multi-stage telescopic nose boom and a Gulfstream-patented design (references 1 and 2), was developed to address the sonic boom attenuation challenge and validate the technical feasibility of a morphing fuselage. The Quiet Spike Flight Test Program represents a major step into supersonic technology development for sonic boom suppression. The Gulfstream Aerospace Quiet Spike was designed to reduce the sonic boom signature of the forward fuselage for an aircraft flying at supersonic speeds. In 2004, the Quiet Spike Flight Test Program was conceived by Gulfstream and NASA to demonstrate the feasibility of sonic boom mitigation and centered on the structural and mechanical viability of the translating test article design. Research testing of the Quiet Spike consisted of numerous ground and flight operations. Each step in the process had unique objectives, and involved numerous test team members from the NASA Dryden Flight Research Center (DFRC) and Gulfstream Aerospace. Flight testing of the Quiet Spike was conducted at the NASA Dryden Flight Research Center on an F-15B aircraft from August, 2006, to February, 2007. During this period, the Quiet Spike was flown at supersonic speeds up to Mach 1.8 at the maximum design dynamic pressure of 685 pounds per square foot. Extension and retraction tests were conducted at speeds up to Mach 1.4. The design of the Quiet Spike to shape the forward shock wave environment of the aircraft was confirmed during near-field shock wave probing at Mach 1.4. Thirty-two flights were performed without incident and all project objectives were achieved. The success of the Quiet Spike Flight Test Program represents an important step towards developing commercial aircraft capable of supersonic flight over land within the continental United States and in international airspace.
    Keywords: Aircraft Design, Testing and Performance
    Type: 51st SETP Symposium; Sep 27, 2007 - Sep 29, 2007; Anaheim, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: The recent flight demonstration of shaped sonic booms shows the potential for quiet overland supersonic flight, which could revolutionize air transport. To successfully design quiet supersonic aircraft, the upper limit of an acceptable noise level must be determined through quantitative recording and subjective human response measurements. Past efforts have concentrated on the use of sonic boom simulators to assess human response, but simulators often cannot reproduce a realistic sonic boom sound. Until now, molecular relaxation effects on low overpressure rise time had never been compared with flight data. Supersonic flight slower than the cutoff Mach number, which generates evanescent waves, also prevents loud sonic booms from impacting the ground. The loudness of these evanescent waves can be computed, but flight measurement validation is needed. A novel flight demonstration technique that generates low overpressure N-waves using conventional military aircraft is outlined, in addition to initial quantitative flight data. As part of this demonstration, evanescent waves also will be recorded.
    Keywords: Acoustics
    Type: 17th International Symposium of Nonlinear Acoustics; Jul 21, 2005 - Jul 22, 2005; State College, PA; United States|International Sonic Boom Forum; Jul 21, 2005 - Jul 22, 2005; State College, PA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...