ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-24
    Description: Prolonged exposure of humans to hypogravity causes weakening of their skeletal muscles. This problem was studied in rats exposed to hypogravity for 7 days aboard Spacelab 3. Hindlimb muscles were harvested 12-16 hours postflight for histochemical, biochemical, and ultrastructural analyses. The majority of the soleus and extensor digitorum longus fibers exhibited simple cell shrinkage. However, approximately 1% of the fibers in flight soleus muscles appeared necrotic. Flight muscle fibers showed increased glycogen, lower subsarcolemmal staining for mitochondrial enzymes, and fewer subsarcolemmal mitochondria. During atrophy, myofibrils were eroded by multiple focal losses of myofilaments; lysosomal autophagy was not evident. Tripeptidylaminopeptidase and calcium-activated protease activities of flight soleus fibers were significantly increased, implying a role in myofibril breakdown. Simple fiber atrophy appears to account for muscle weakening during spaceflight, but fiber necrosis is also a contributing factor.
    Keywords: Life Sciences (General)
    Type: Muscle & nerve (ISSN 0148-639X); Volume 10; 6; 560-8
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Description: Histochemical and ultrastructural analyses were performed postflight on hind limb skeletal muscles of rats orbited for 12.5 days aboard the unmanned Cosmos 1887 biosatellite and returned to Earth 2 days before sacrifice. The antigravity adductor longus (AL), soleus, and plantaris muscles atrophied more than the non-weight-bearing extensor digitorum longus, and slow muscle fibers were more atrophic than fast fibers. Muscle fiber segmental necrosis occurred selectively in the AL and soleus muscles; primarily, macrophages and neutrophils infiltrated and phagocytosed cellular debris. Granule-rich mast cells were diminished in flight AL muscles compared with controls, indicating the mast cell secretion contributed to interstitial tissue edema. Increased ubiquitination of disrupted myofibrils implicated ubiquitin in myofilament degradation. Mitochondrial content and succinic dehydrogenase activity were normal, except for subsarcolemmal decreases. Myofibrillar ATPase activity of flight AL muscle fibers shifted toward the fast type. Absence of capillaries and extravasation of red blood cells indicated failed microcirculation. Muscle fiber regeneration from activated satellite cells was detected. About 17% of the flight AL end plates exhibited total or partial denervation. Thus, skeletal muscle weakness associated with spaceflight can result from muscle fiber atrophy and segmental necrosis, partial motor denervation, and disruption of the microcirculation.
    Keywords: Life Sciences (General)
    Type: The FASEB journal : official publication of the Federation of American Societies for Experimental Biology (ISSN 0892-6638); Volume 4; 1; 84-91
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: Hindlimb suspension unloading (HSU) and spaceflight microgravity induce atrophy of the slow adductor longus muscle fibers which, following reloading, exhibit eccentric contraction (EC)-like lesions (abnormal widening of sarcomeres with A band disruption and excessively wavy, extracted Z lines). These lesions are similar morphologically to those produced in normal muscles after strenuous eccentric exercise. It appears that atrophic muscles exhibit increased susceptibility to eccentric damage because lesions are produced during nonstressful voluntary movements upon return to weightbearing. The EC-like lesions are absent in the unweighted conditions, but appear in HSU rats 15-60 minutes after reloading and in space-flown rates about 4 hrs after landing. By 12 hours, many EC-like lesioned sarcomeres are fully covered by longitudinal patches of Z line-like material which increases in density by 48 hours, producing the so-called "Z line streaming" morphology. In this case, Z line streaming is indicative of rapid repair of damaged sarcomeres rather than the onset of sarcomere breakdown. Immunoelectron microscopy is necessary to determine the composition of this dense material. By 9 days of reloading at 1 gravity, sarcomeres have regained normal structure, except for very rare persistence of faint Z patches. The morphological data indicate that Z patches serve at least two functions: 1) to permit contractile force to be transmitted across the damaged sarcomeres and 2) to provide a scaffold upon which sarcomeres are reconstructed in an active functional muscle.
    Keywords: Aerospace Medicine
    Type: Basic and applied myology : BAM (ISSN 1120-9992); 5; 2; 139-45
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-12
    Description: Data obtained during Cosmos 2044 bisatellite mission are reviewed and found to be consistent with the results of previous rodent spaceflight experiments. Investigation was carried out of hindlimb muscles from flight rats killed as close to land as possible so that changes induced by spaceflight and early readaptation to weight bearing could be distinguished from the changes that resulted from the two-day postflight period during Cosmos 1887. Results presented pertain to muscle atrophy and fiber type changes, eccentric contraction-like lesions, microcirculatory changes and interstitial edema, and tissue damage.
    Keywords: LIFE SCIENCES (GENERAL)
    Type: Journal of Applied Physiology, Supplement (ISSN 8750-7587); 73; 2 Au
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-12
    Description: The effects of hindlimb unloading on rat-soleus histochemisty, ultrastructure, and electromyogram (EMG) activity were investigated. It was found that, after 14 days of tail suspension, the area of type I and type IIa muscle fibers decreased by 63 and 47 percent, respectively, mainly due to the degradation of subsarcolemmal mitochondria and myofibrils. After 10 days, 3 percent of type IIa fibers exhibited segmental necrosis. After four days, video monitoring revealed abnormal plantar flexion of the hindfeet, which shortened the soleus working range. The EMG activity shifted from tonic to phasic, and aggregate activity decreased drastically after only seven days. The results indictate that the pathological changes in the soleus resulted from unloaded contractions, reduced use, compromised blood flow, and shortened working length.
    Keywords: LIFE SCIENCES (GENERAL)
    Type: Journal of Applied Physiology (ISSN 0161-7567); 69; 58-66
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-12
    Description: The pattern of sinoatrial (SA) node innervations in rabbit was elucidated using a newly developed highly reproducible cholinesterase/silver impregnation staining procedure which made it possible to delineate large nerves, fine processes, and ganglion cells. The SA node and dominant pacemaker sites were identified by microelectrode recording. A generalized pattern of innnervation was recognized, which includes a large ganglionic complex inferior to the SA node; two or more moderately large nerves traversing the SA node parallel to the crista terminalis; nerves entering the intercaval region from the septum, the superior vena cava, and the inferior vena cava to impinge on the SA node; and a fine network of nerve processes, which was particularly dense in the SA node. From the location and distribution of the nerves and ganglionic branches, it can be inferred that the neural network in the intercaval region is capable of performing complex modulatory and integrative functions among the structures within this region.
    Keywords: LIFE SCIENCES (GENERAL)
    Type: American Journal of Anatomy (ISSN 0002-9106); 185; 74-88
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: We hypothesized that hindlimb suspension unloading of 8-day-old neonatal rats would disrupt the normal development of muscle fiber types and the motor innervation of the antigravity (weightbearing) soleus muscles but not extensor digitorum longus (EDL) muscles. Five rats were suspended 4.5 h and returned 1.5 h to the dam for nursing on a 24 h cycle for 9 days. To control for isolation from the dam, the remaining five littermates were removed on the same schedule but not suspended. Another litter of 10 rats housed in the same room provided a vivarium control. Fibers were typed by myofibrillar ATPase histochemistry and immunostaining for embryonic, slow, fast IIA and fast IIB isomyosins. The percentage of multiple innervation and the complexity of singly-innervated motor terminal endings were assessed in silver/cholinesterase stained sections. Unique to the soleus, unloading accelerated production of fast IIA myosin, delayed expression of slow myosin and retarded increases in standardized muscle weight and fiber size. Loss of multiple innervation was not delayed. However, fewer than normal motor nerve endings achieved complexity. Suspended rats continued unloaded hindlimb movements. These findings suggest that motor neurons resolve multiple innervation through nerve impulse activity, whereas the postsynaptic element (muscle fiber) controls endplate size, which regulates motor terminal arborization. Unexpectedly, in the EDL of unloaded rats, transition from embryonic to fast myosin expression was retarded. Suspension-related foot drop, which stretches and chronically loads EDL, may have prevented fast fiber differentiation. These results demonstrate that neuromuscular development of both weightbearing and non-weightbearing muscles in rats is dependent upon and modulated by hindlimb loading.
    Keywords: Aerospace Medicine
    Type: Brain research. Developmental brain research (ISSN 0165-3806); 119; 2; 169-78
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...