ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-05-23
    Description: Water column redox conditions, degree of restriction of the depositional basin, and other paleoenvironmental parameters have been determined for the Mississippian Kuna Formation of northwestern Alaska from stratigraphic profiles of Mo, Fe/Al, and S isotopes in pyrite, C isotopes in organic matter, and N isotopes in bulk rock. This unit is important because it hosts the Red Dog and Anarraaq Zn-Pb-Ag ± barite deposits, which together constitute one of the largest zinc resources in the world. The isotopic and chemical proxies record a deep basin environment that became isolated from the open ocean, became increasingly reducing, and ultimately became euxinic. The basin was ventilated briefly and then became isolated again just prior to its demise as a discrete depocenter with the transition to the overlying Siksikpuk Formation. Ventilation corresponded approximately to the initiation of bedded barite deposition in the district, whereas the demise of the basin corresponded approximately to the formation of the massive sulfide deposits. The changes in basin circulation during deposition of the upper Kuna Formation may have had multiple immediate causes, but the underlying driver was probably extensional tectonic activity that also facilitated fluid flow beneath the basin floor. Although the formation of sediment-hosted sulfide deposits is generally favored by highly reducing conditions, the Zn-Pb deposits of the Red Dog district are not found in the major euxinic facies of the Kuna basin, nor did they form during the main period of euxinia. Rather, the deposits occur where strata were permeable to migrating fluids and where excess H 2 S was available beyond what was produced in situ by decomposition of local sedimentary organic matter. The known deposits formed mainly by replacement of calcareous strata that gained H 2 S from nearby highly carbonaceous beds (Anarraaq deposit) or by fracturing and vein formation in strata that produced excess H 2 S by reductive dissolution of preexisting barite (Red Dog deposits).
    Print ISSN: 0361-0128
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-01-29
    Electronic ISSN: 1553-040X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-12-03
    Description: Dissected caldera structures expose thick intracaldera tuff and, uncommonly, cogenetic shallow plutons, while remnants of correlative outflow tuffs deposited on the pre-eruption ground surface record elements of ancient landscapes. The Middle Fork caldera encompasses a 10 km x 20 km area of rhyolite welded tuff and granite porphyry in east-central Alaska, ~100 km west of the Yukon border. Intracaldera tuff is at least 850 m thick. The K-feldspar megacrystic granite porphyry is exposed over much of a 7 km x 12 km area having 650 m of relief within the western part of the caldera fill. Sensitive high-resolution ion microprobe with reverse geometry (SHRIMP-RG) analyses of zircon from intracaldera tuff, granite porphyry, and outflow tuff yield U-Pb ages of 70.0 ± 1.2, 69.7 ± 1.2, and 71.1 ± 0.5 Ma (95% confidence), respectively. An aeromagnetic survey indicates that the tuff is reversely magnetized, and, therefore, that the caldera-forming eruption occurred in the C31r geomagnetic polarity chron. The tuff and porphyry have arc geochemical signatures and a limited range in SiO 2 of 69 to 72 wt%. Although their phenocrysts differ in size and abundance, similar quartz + K-feldspar + plagioclase + biotite mineralogy, whole-rock geochemistry, and analytically indistinguishable ages indicate that the tuff and porphyry were comagmatic. Resorption of phenocrysts in tuff and porphyry suggests that these magmas formed by thermal rejuvenation of near-solidus or solidified crystal mush. A rare magmatic enclave (54% SiO 2 , arc geochemical signature) in the porphyry may be similar to parental magma and provides evidence of mafic magma and thermal input. The Middle Fork is a relatively well preserved caldera within a broad region of Paleozoic metamorphic rocks and Mesozoic plutons bounded by northeast-trending faults. In the relatively downdropped and less deeply exhumed crustal blocks, Cretaceous–Early Tertiary silicic volcanic rocks attest to long-term stability of the landscape. Within the Middle Fork caldera, the granite porphyry is interpreted to have been exposed by erosion of thick intracaldera tuff from an asymmetric resurgent dome. The Middle Fork of the North Fork of the Fortymile River incised an arcuate valley into and around the caldera fill on the west and north and may have cut down from within an original caldera moat. The 70 Ma land surface is preserved beneath proximal outflow tuff at the west margin of the caldera structure and beneath welded outflow tuff 16–23 km east-southeast of the caldera in a paleovalley. Within ~50 km of the Middle Fork caldera are 14 examples of Late Cretaceous (?)–Tertiary felsic volcanic and hypabyssal intrusive rocks that range in area from 〈1 km 2 to ~100 km 2 . Rhyolite dome clusters north and northwest of the caldera occupy tectonic basins associated with northeast-trending faults and are relatively little eroded. Lava of a latite complex, 12–19 km northeast of the caldera, apparently flowed into the paleovalley of the Middle Fork of the North Fork of the Fortymile River. To the northwest of the Middle Fork caldera, in the Mount Harper crustal block, mid-Cretaceous plutonic rocks are widely exposed, indicating greater total exhumation. To the southeast of the Middle Fork block, the Mount Veta block has been uplifted sufficiently to expose a ca. 68–66 Ma equigranular granitic pluton. Farther to the southeast, in the Kechumstuk block, the flat-lying outflow tuff remnant in Gold Creek and a regionally extensive high terrace indicate that the landscape there has been little modified since 70 Ma other than entrenchment of tributaries in response to post–2.7 Ma lowering of base level of the Yukon River associated with advance of the Cordilleran ice sheet.
    Electronic ISSN: 1553-040X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-03-01
    Print ISSN: 0361-0128
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-09-01
    Description: The Blackbird district, east-central Idaho, contains the largest known Co reserves in the United States. The origin of strata-hosted Co-Cu ± Au mineralization at Blackbird has been a matter of controversy for decades. In order to differentiate among possible genetic models for the deposits, including various combinations of volcanic, sedimentary, magmatic, and metamorphic processes, we used U-Pb geochronology of xenotime, monazite, and zircon to establish time constraints for ore formation. New age data reported here were obtained using sensitive high resolution ion microprobe (SHRIMP) microanalysis of (1) detrital zircons from a sample of Mesoproterozoic siliciclastic metasedimentary country rock in the Blackbird district, (2) igneous zircons from Mesoproterozoic intrusions, and (3) xenotime and monazite from the Merle and Sunshine prospects at Blackbird. Detrital zircon from metasandstone of the biotite phyllite-schist unit has ages mostly in the range of 1900 to 1600 Ma, plus a few Neoarchean and Paleoproterozoic grains. Age data for the six youngest grains form a coherent group at 1409 ± 10 Ma, regarded as the maximum age of deposition of metasedimentary country rocks of the central structural domain. Igneous zircons from nine samples of megacrystic granite, granite augen gneiss, and granodiorite augen gneiss that crop out north and east of the Blackbird district yield ages between 1383 ± 4 and 1359 ± 7 Ma. Emplacement of the Big Deer Creek megacrystic granite (1377 ± 4 Ma), structurally juxtaposed with host rocks in the Late Cretaceous ca. 5 km north of Blackbird, may have been involved in initial deposition of rare earth elements (REE) minerals and, possibly, sulfides. In situ SHRIMP ages of xenotime and monazite in Co-rich samples from the Merle and Sunshine prospects, plus backscattered electron imagery and SHRIMP analyses of trace elements, indicate a complex sequence of Mesoproterozoic and Cretaceous events. On the basis of textural relationships observed in thin section, xeno-time and cobaltite formed during multiple episodes. The oldest age for xenotime (1370 ± 4 Ma), determined on oscillatory-zoned cores, may date the time of initial cobaltite formation, and provides a minimum age for the host metasedimentary rocks. Additional Proterozoic xenotime growth events occurred at 1315 to 1270 Ma and ca. 1050 Ma. Other xenotime grains and rims grew in conjunction with cobaltite during Cretaceous metamorphism. However, ages of these growth episodes cannot be precisely determined due to matrix effects on 206 Pb/ 238 U data for xenotime. Monazite, some of which encloses cobaltite, uniformly has Cretaceous ages that mainly are 110 ± 3 and 92 ± 5 Ma. These data indicate that xenotime, monazite, and cobaltite were extensively mobilized and precipitated during Middle to Late Cretaceous metamorphic events.
    Print ISSN: 0361-0128
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-09-01
    Description: Mineralogical and geochemical studies of strata-bound Fe-Co-Cu-Au-Bi-Y-rare-earth element (REE) deposits of the Idaho cobalt belt in east-central Idaho provide evidence of multistage epigenetic mineralization by magmatic-hydrothermal processes in an iron oxide copper-gold (IOCG) system. Deposits of the Idaho cobalt belt comprise three types: (1) strata-bound sulfide lenses in the Blackbird district, which are cobaltite and, less commonly, chalcopyrite rich with locally abundant gold, native bismuth, bismuthinite, xenotime, allanite, monazite, and the Be-rich silicate gadolinite-(Y), with sparse uraninite, stannite, and Bi tellurides, in a gangue of quartz, chlorite, biotite, muscovite, garnet, tourmaline, chloritoid, and/or siderite, with locally abundant fluorapatite or magnetite; (2) discordant tourmalinized breccias in the Blackbird district that in places have concentrations of cobaltite, chalcopyrite, gold, and xenotime; and (3) strata-bound magnetite-rich lenses in the Iron Creek area, which contain cobaltiferous pyrite and locally sparse chalcopyrite or xenotime. Most sulfide-rich deposits in the Blackbird district are enclosed by strata-bound lenses composed mainly of Cl-rich Fe biotite; some deposits have quartz-rich envelopes. Whole-rock analyses of 48 Co- and/or Cu-rich samples show high concentrations of Au (up to 26.8 ppm), Bi (up to 9.16 wt %), Y (up to 0.83 wt %), REEs (up to 2.56 wt %), Ni (up to 6,780 ppm), and Be (up to 1,180 ppm), with locally elevated U (up to 124 ppm) and Sn (up to 133 ppm); Zn and Pb contents are uniformly low (≤821 and ≤61 ppm, respectively). Varimax factor analysis of bulk compositions of these samples reveals geochemically distinct element groupings that reflect statistical associations of monazite, allanite, and xenotime; biotite and gold; detrital minerals; chalcopyrite and sparse stannite; quartz; and cobaltite with sparse selenides and tellurides. Significantly, Cu is statistically separate from Co and As, consistent with the general lack of abundant chalcopyrite in cobaltite-rich samples. Paragenetic relations determined by scanning electron microscopy indicate that the earliest Y-REE-Be mineralization preceded deposition of Co, Cu, Au, and Bi. Allanite, xenotime, and gadolinite-(Y) commonly occur as intergrowths with and inclusions in cobaltite; the opposite texture is rare. Monazite, in contrast, forms a poikiloblastic matrix to cobaltite and thin rims on allanite and xenotime, reflecting a later metamorphic paragenesis. Allanite and xenotime also show evidence of late dissolution and reprecipitation, forming discordant rims on older anhedral allanite and xenotime and separate euhedral crystals of each mineral. Textural data suggest extensive deformation of the deposits by folding and shearing, and by pervasive recrystallization, all during Cretaceous metamorphism. Sensitive high resolution ion microprobe U-Pb geochronology by Aleinikoff et al. (2012) supports these paragenetic interpretations, documenting contemporaneous Mesoproterozoic growth of early xenotime and crystallization of megacrystic A-type granite on the northern border of the district. These ages are used together with mineralogical and geochemical data from the present study to support an epigenetic, IOCG model for Fe-Co-Cu-Au-Bi-Y-REE deposits of the Idaho cobalt belt. A sulfide facies variant of IOCG deposits is proposed for the Blackbird district, in which reducing hydrothermal conditions favored deposition of sulfide minerals over iron oxides. This new model includes Mesoproterozoic vein mineralization and related Fe-Cl metasomatism that formed the biotite-rich lenses, a predominantly felsic magmatic source for metals in the deposits, given their local abundance of Y, REEs, and Be, and a major sedimentary component in the hydrothermal fluids based on independent sulfur isotope and boron isotope data for sulfides and ore-related tourmaline, respectively.
    Print ISSN: 0361-0128
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-09-01
    Description: Cobalt-copper ± gold deposits of the Idaho cobalt belt, including the deposits of the Blackbird district, have been analyzed for their sulfur, carbon, hydrogen, and oxygen isotope compositions to improve the understanding of ore formation. Previous genetic hypotheses have ranged widely, linking the ores to the sedimentary or diagenetic history of the host Mesoproterozoic sedimentary rocks, to Mesoproterozoic or Cretaceous magmatism, or to metamorphic shearing. The 34 S values are nearly uniform throughout the Blackbird district, with a mean value for cobaltite (CoAsS, the main cobalt mineral) of 8.0 ± 0.4 ( n = 19). The data suggest that (1) sulfur was derived at least partly from sedimentary sources, (2) redox reactions involving sulfur were probably unimportant for ore deposition, and (3) the sulfur was probably transported to sites of ore formation as H 2 S. Hydrogen and oxygen isotope compositions of the ore-forming fluid, which are calculated from analyses of biotite-rich wall rocks and tourmaline, do not uniquely identify the source of the fluid; plausible sources include formation waters, metamorphic waters, and mixtures of magmatic and isotopically heavy meteoric waters. The calculated compositions are a poor match for the modified seawaters that form volcanogenic massive sulfide (VMS) deposits. Carbon and oxygen isotope compositions of siderite, a mineral that is widespread, although sparse, at Blackbird, suggest formation from mixtures of sedimentary organic carbon and magmatic-metamorphic carbon. The isotopic compositions of calcite in alkaline dike rocks of uncertain age are consistent with a magmatic origin. Several lines of evidence suggest that siderite postdated the emplacement of cobalt and copper, so its significance for the ore-forming event is uncertain. From the stable isotope perspective, the mineral deposits of the Idaho cobalt belt contrast with typical VMS and sedimentary exhalative deposits. They show characteristics of deposit types that form in deeper environments and could be related to metamorphic processes or magmatic processes, although the isotopic evidence for magmatic components is relatively weak.
    Print ISSN: 0361-0128
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-11-18
    Description: Iron oxide-apatite and iron oxide-copper-gold deposits occur within ~1.48 to 1.47 Ga volcanic rocks of the St. Francois Mountains terrane near a regional boundary separating crustal blocks having contrasting depleted-mantle Sm-Nd model ages (T DM ). Major and trace element analyses and Nd and Pb isotope data were obtained to characterize the Pea Ridge deposit, improve identification of exploration targets, and better understand the regional distribution of mineralization with respect to crustal blocks. The Pea Ridge deposit is spatially associated with felsic volcanic rocks and plutons. Mafic to intermediate-composition rocks are volumetrically minor. Data for major element variations are commonly scattered and strongly suggest element mobility. Ratios of relatively immobile elements indicate that the felsic rocks are evolved subalkaline dacite and rhyolite; the mafic rocks are basalt to basaltic andesite. Granites and rhyolites display geochemical features typical of rocks produced by subduction. Rare earth element (REE) variations for the rhyolites are diagnostic of rocks affected by hydrothermal alteration and associated REE mineralization. The magnetite-rich rocks and REE-rich breccias show similar REE and mantle-normalized trace element patterns. Nd isotope compositions (age corrected) show that: (1) host rhyolites have Nd from 3.44 to 4.25 and T DM from 1.51 to 1.59 Ga; (2) magnetite ore and specular hematite rocks display Nd from 3.04 to 4.21 and T DM from 1.6 to 1.51 Ga, and Nd from 2.23 to 2.81, respectively; (3) REE-rich breccias have Nd from 3.04 to 4.11 and T DM from 1.6 to 1.51 Ga; and (4) mafic to intermediate-composition rocks range in Nd from 2.35 to 3.66 and in T DM from 1.66 to 1.56. The Nd values of the magnetite and specular hematite samples show that the REE mineralization is magmatic; no evidence exists for major overprinting by younger, crustal meteoric fluids, or by externally derived Nd. Host rocks, breccias, and magnetite ore shared a common origin from a similar source. Lead isotope ratios are diverse: (1) host rhyolite has 206 Pb/ 204 Pb from 24.261 to 50.091; (2) Pea Ridge and regional galenas have 206 Pb/ 204 Pb from 16.030 to 33.548; (3) REE-rich breccia, magnetite ore, and specular hematite rock are more radiogenic than galena; (4) REE-rich breccias have high 206 Pb/ 204 Pb (38.122–1277.61) compared to host rhyolites; and (5) REE-rich breccias are more radiogenic than magnetite ore and specular-hematite rock, having 206 Pb/ 204 Pb up to 230.65. Radiogenic 207 Pb/ 206 Pb age estimates suggest the following: (1) rhyolitic host rocks have ages of ~1.50 Ga, (2) magnetite ore is ~1.44 Ga, and (3) REE-rich breccias are ~1.48 Ga. These estimates are broadly consistent and genetically link the host rhyolite, REE-rich breccia, and magnetite ore as being contemporaneous. Alteration style and mineralogical or textural distinctions among the magnetite-rich rocks and REE-rich breccias do not correlate with different isotopic sources. In our model, magmatic fluids leached metals from the coeval felsic rocks (rhyolites), which provided the metal source reflected in the compositions of the REE-rich breccias and mineralized rocks. This model allows for the likelihood of contributions from other genetically related felsic and intermediate to more mafic rocks stored deeper in the crust. The deposit thus records an origin as a magmatic-hydrothermal system that was not affected by Nd and Pb remobilization processes, particularly if these processes also triggered mixing with externally sourced metal-bearing fluids. The Pea Ridge deposit was part of a single, widespread, homogeneous mixing system that produced a uniform isotopic composition, thus representing an excellent example of an igneous-dominated system that generated coeval magmatism and REE mineralization. Geochemical features suggest that components in the Pea Ridge deposit originated from sources in an orogenic margin. Basaltic magmatism produced by mantle decompression melting provided heat for extracting melts from the middle or lower crust. Continual addition of mafic magmas to the base of the subcontinental lithosphere, in a back-arc setting, remelted calc-alkaline rocks enriched in metals that were stored in the crust. The St. Francois Mountains terrane is adjacent to the regional T DM line (defined at a value of 1.55 Ga) that separates ~1600 Ma basement to the west, from younger basements to the east. Data for Pea Ridge straddle the T DM values proposed for the line. The Sm-Nd isotope system has been closed since formation of the deposit and the original igneous signatures have not been affected by cycles of alteration or superimposed mineralizing events. No evidence exists for externally derived Nd or Sm. The source region for metals within the Pea Ridge deposit had a moderate compositional variation and the REE-rich breccias and mineralized rocks are generally isotopically homogeneous. The Pea Ridge deposit thus constitutes a distinctive isotopic target for use as a model in identifying other mineralized systems that may share the same metal source in the St. Francois Mountains terrane and elsewhere in the eastern Granite-Rhyolite province.
    Print ISSN: 0361-0128
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-11-18
    Description: This paper provides an overview on the genesis of Mesoproterozoic igneous rocks and associated iron oxide ± apatite (IOA) ± rare earth element, iron oxide-copper-gold (IOCG), and iron-rich sedimentary deposits in the St. Francois Mountains terrane of southeast Missouri, USA. The St. Francois Mountains terrane lies along the southeastern margin of Laurentia as part of the eastern granite-rhyolite province. The province formed during two major pulses of igneous activity: (1) an older early Mesoproterozoic (ca. 1.50–1.44 Ga) episode of volcanism and granite plutonism, and (2) a younger middle Mesoproterozoic (ca. 1.33–1.30 Ga) episode of bimodal gabbro and granite plutonism. The volcanic rocks are predominantly high-silica rhyolite pyroclastic flows, volcanogenic breccias, and associated volcanogenic sediments with lesser amounts of basaltic to andesitic volcanic and associated subvolcanic intrusive rocks. The iron oxide deposits are all hosted in the early Mesoproterozoic volcanic and volcaniclastic sequences. Previous studies have characterized the St. Francois Mountains terrane as a classic, A-type within-plate granitic terrane. However, our new whole-rock geochemical data indicate that the felsic volcanic rocks are effusive derivatives from multicomponent source types, having compositional similarities to A-type within-plate granites as well as to S- and I-type granites generated in an arc setting. In addition, the volcanic-hosted IOA and IOCG deposits occur within bimodal volcanic sequences, some of which have volcanic arc geochemical affinities, suggesting an extensional tectonic setting during volcanism prior to emplacement of the ore-forming systems. The Missouri iron orebodies are magmatic-related hydrothermal deposits that, when considered in aggregate, display a vertical zonation from high-temperature, magmatic ± hydrothermal IOA deposits emplaced at moderate depths (~1–2 km), to magnetite-dominant IOA veins and IOCG deposits emplaced at shallow subvolcanic depths. The shallowest parts of these systems include near-surface, iron oxide-only replacement deposits, surficial epithermal sediment-hosted replacement deposits, synsedimentary ironstone deposits, and Mn-rich exhalite deposits. Alteration associated with the IOA and IOCG mineralizing systems of the host volcanic rocks dominantly produced potassic with lesser amounts of calcic- and sodic-rich mineral assemblages. No deposits are known to be hosted in granite, implying that the mineralizing systems were operative during a relatively short, postvolcanic period yet prior to intrusion of the granitoids. Companion studies in this special issue on mineral chemistry, stable isotopes, and iron isotopes suggest that the magnetite within the IOA deposits formed from high-temperature fluids of magmatic or magmatic-hydrothermal origin. However, the data do not discriminate between a magmatic-hydrothermal source fluid exsolved from an Fe-rich immiscible liquid or an Fe-rich silicate magma. Mineral chemical, fluid inclusion, and stable isotope data from these new studies record the effects of metasomatic fluids that interacted with crustal reservoirs such as volcanic rocks or seawater.
    Print ISSN: 0361-0128
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2012-11-01
    Description: Volcanogenic massive sulfide (VMS) Zn-Pb-Cu-Ag-Au deposits of the Bonnifield mining district formed during Late Devonian-Early Mississippian magmatism along the western edge of Laurentia. The largest deposits, Dry Creek and WTF, have a combined resource of 5.7 million tonnes at 10% Zn, 4% Pb, 0.3% Cu, 300 grams per tonne (g/t) Ag, and 1.6 g/t Au. These polymetallic deposits are hosted in high field strength element (HFSE)- and rare-earth element (REE)-rich peralkaline (pantelleritic) metarhyolite, and interlayered pyritic argillite and mudstone of the Mystic Creek Member of the Totatlanika Schist Formation. Mystic Creek metarhyolite and alkali basalt (Chute Creek Member) constitute a bimodal pair that formed in an extensional environment. A synvolcanic peralkaline quartz porphyry containing veins of fluorite, sphalerite, pyrite, and quartz intrudes the central footwall at Dry Creek. The Anderson Mountain deposit, located ~32 km to the southwest, occurs within calc-alkaline felsic to intermediate-composition metavolcanic rocks and associated graphitic argillite of the Wood River assemblage. Felsic metavolcanic rocks there have only slightly elevated HFSEs and REEs. The association of abundant graphitic and siliceous argillite with the felsic volcanic rocks together with low Cu contents in the Bonnifield deposits suggests classification as a siliciclastic-felsic type of VMS deposit. Bonnifield massive sulfides and host rocks were metamorphosed and deformed under greenschist-facies conditions in the Mesozoic. Primary depositional textures, generally uncommon, consist of framboids, framboidal aggregates, and spongy masses of pyrite. Sphalerite, the predominant base metal sulfide, encloses early pyrite framboids. Galena and chalcopyrite accompanied early pyrite formation but primarily formed late in the paragenetic sequence. Silver-rich tetrahedrite is a minor late phase at the Dry Creek deposit. Gold and Ag are present in low to moderate amounts in pyrite from all of the deposits; electrum inclusions occur in Dry Creek sphalerite. Contents and ratios of trace elements in graphitic argillite that serve as proxies for the redox state of the bottom waters in the basin indicate that Dry Creek mineralization took place in suboxic to periodically anoxic bottom waters. Trace element data show higher contents of Tl-Mn-As in pyrite from the Anderson Mountain deposit compared to the Dry Creek or WTF deposits and thus suggest that Anderson Mountain may have formed at lower temperatures or under slightly more oxidizing conditions. No exact modern analogue for the tectonic setting of the Bonnifield VMS deposits is known, although the back-arc regions of the Okinawa Trough and Woodlark Basin satisfy the requirement for a submarine, extensional setting adjacent to a continental margin. Limited occurrences of peralkaline volcanic rocks occur in these two potential analogues, but the peralkalinity of those rocks is much less than that of the Mystic Creek Member metarhyolites in the Bonnifield district. The highly elevated trace element (e.g., Zr, Nb) contents of Mystic Creek metarhyolites suggest that a better analogue may be a submarine rifted continental margin. The calc-alkaline composition of the host rocks to the Anderson Mountain deposit suggests that mineralization there formed in a continental margin arc, outboard of the extended continental margin setting of the peralkaline-hosted Dry Creek and WTF deposits.
    Print ISSN: 0361-0128
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...