ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: Microbiology. ; Microbial ecology. ; Stress (Physiology). ; Plants. ; Microbiology. ; Microbial Ecology. ; Plant Stress Responses.
    Description / Table of Contents: Chapter 1. Detection and identification of soil borne pathogens: Classical to Recent updates -- Chapter 2. Microarray-based detection and identification of bacterial and viral plant pathogens -- Chapter 3. Application molecular ecology approaches in sustainable agriculture for a better understanding of plant microbiome interactions -- Chapter 4. Advancements in detection and diagnosis of important soil-borne diseases -- Chapter 5. Omics approaches to revisit rhizo-bacterial biome -- Chapter 6. Engineering the Plant Microbiome for Biotic Stress tolerance: Biotechnological Advances -- Chapter 7. Potential of bacterial endophytes in biological control of soil borne phytopathogens -- Chapter 8. Endophytes: Rendering systemic resistance to plant -- Chapter 9. Arbuscular Mycorrhizal Fungi (AMF) as Potential Biocontrol Agents -- Chapter 10. Rhizosphere microbes and Wheat Health Management -- Chapter 11. Exploring the potential of secondary metabolites from indigenous Trichoderma spp. for their plant growth promotion and disease suppression ability in pulses -- Chapter 12. Uncultivable soil microbes contributing to sustainable agriculture -- Chapter 13. Rhizosphere microbiome: Significance in sustainable crop protection -- Chapter 14. Bacterial inoculants for control of fungal diseases in tomatoes (Solanum lycopersicum L.): A comprehensive overview -- Chapter 15. Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important -- Chapter 16. Prior weakening as a tool to control soilborne plant pathogens and associated disease pressure.
    Abstract: This edited book volume aims to bringing out a comprehensive collection of latest information and developments on the management of biotic stresses by the use of rhizospheric microbes across the globe. The main focus of this book is to address the scientific and practical significance of rhizosphere microbes in biotic stress management. The microbial communities in the rhizosphere ecosystem play multitude of microbe-microbe, microbe-insect/pest and plant-microbe interactions and they have not yet been fully exploited to gain benefits in this field as well as to achieve sustainability in agriculture. Among the more recent strategies, stress tolerance/resistance induced by environment-friendly elicitors of microbial origin and/or rhizosphere microorganisms has emerged as a promising supplement in the approaches to crop protection. The proposed book entitled "Rhizosphere Microbes: Biotic Stress Management” is pertinent to rhizospheric microbe-mediated biotic stress management covering all spheres of biotic stress tolerance viz., bio-resources, diversity, ecology, and functioning of microbial bio-control agents, host–parasite interaction, strategies to characterize microbial bioinoculants, interactions of rhizosphere microbes by developing a fundamental understanding of the microbial communities, exploration of the diverse roles of microbes and microbial communities and their role in biotic stress tolerance, microbe-mediated mitigation of biotic stresses, quorum sensing, microbial signalling and cross-talk in the rhizosphere, biofilm formation, cell-to-cell communication, role of microorganisms in ecosystems functioning under various biotic stress conditions, application of microbial bio-pesticides, molecular studies using microbial systems, etc. This book is of interest to teachers, researchers, crop protection scientists, capacity builders and policymakers. Also the book serves as additional reading material for under-graduate, post-graduate, and post-doctorate fellow of agriculture, forestry, ecology, life science, and environmental sciences. National and international agricultural scientists, policy makers will also find this to be a useful read.
    Type of Medium: Online Resource
    Pages: XVII, 370 p. 1 illus. , online resource.
    Edition: 1st ed. 2022.
    ISBN: 9789811958724
    Series Statement: Microorganisms for Sustainability, 40
    DDC: 579
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-06-15
    Description: Background: Ralstonia solanacearum has the problem of losing the virulence in laboratory conditions, during prolonged experimentation. Since pure colonies of R. solanacearum contain cell fractions differing in virulence, it was considered worthwhile to find a way of selecting the cells with lower attenuation. Therefore, a methodology for inducing virulent-type colonies occurrence in Ralstonia solanacearum was developed. Methods: Nutrient gradient was created by swabbing R. solanacearum culture in a slanted KMTTC medium, and Phyllanthus emblica extract was given by well diffusion. Live–dead cell imaging using BacLight, effects of ascorbic acid on cell viability, and production of virulence factors (exopolysaccharides, cellulase, and pectinase) supported this hypothesis. The tagging of R. solanacearum with green fluorescent protein and further confocal scanning laser microscopic visualization confirmed the colonization in vascular bundles of tomato. Results: P. emblica extract suppressed R. solanacearum initially in well diffusion, but further developed virulent-type colonies around the wells. Nutrient deprivation was found to have synergistic effects with P. emblica extract. The converted fluidal (virulent type) colonies could be able to colonize vascular bundles and cause wilting symptoms. Conclusion: This method will be useful in the laboratories working on biocontrol of R. solanacearum for maintaining virulent-type colonies. Moreover, it could form the basis for studies on the stability of phenotypic conversion and cell fractions in R. solanacearum.
    Print ISSN: 1661-7827
    Electronic ISSN: 1660-4601
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-01-03
    Description: In this paper, auto-regressive integrated moving average (ARIMA) time-series data forecast models are evaluated to ascertain their feasibility in predicting human–machine interface (HMI) state transitions, which are modeled as multivariate time-series patterns. Human–machine interface states generally include changes in their visually displayed information brought about due to both process parameter changes and user actions. This approach has wide applications in industrial controls, such as nuclear power plant control rooms and transportation industry, such as aircraft cockpits, etc., to develop non-intrusive real-time monitoring solutions for human operator situational awareness and potentially predicting human-in-the-loop error trend precursors.
    Electronic ISSN: 2504-4990
    Topics: Computer Science
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-02-23
    Description: : Microorganisms area treasure in terms of theproduction of various bioactive compounds which are being explored in different arenas of applied sciences. In agriculture, microbes and their bioactive compounds are being utilized in growth promotion and health promotion withnutrient fortification and its acquisition. Exhaustive explorations are unraveling the vast diversity of microbialcompounds with their potential usage in solving multiferous problems incrop production. Lipopeptides are one of such microbial compounds which havestrong antimicrobial properties against different plant pathogens. These compounds are reported to be produced by bacteria, cyanobacteria, fungi, and few other microorganisms; however, genus Bacillus alone produces a majority of diverse lipopeptides. Lipopeptides are low molecular weight compounds which havemultiple industrial roles apart from being usedas biosurfactants and antimicrobials. In plant protection, lipopeptides have wide prospects owing totheirpore-forming ability in pathogens, siderophore activity, biofilm inhibition, and dislodging activity, preventing colonization bypathogens, antiviral activity, etc. Microbes with lipopeptides that haveall these actions are good biocontrol agents. Exploring these antimicrobial compounds could widen the vistasof biological pest control for existing and emerging plant pathogens. The broader diversity and strong antimicrobial behavior of lipopeptides could be a boon for dealing withcomplex pathosystems and controlling diseases of greater economic importance. Understanding which and how these compounds modulate the synthesis and production of defense-related biomolecules in the plants is a key question—the answer of whichneeds in-depth investigation. The present reviewprovides a comprehensive picture of important lipopeptides produced by plant microbiome, their isolation, characterization, mechanisms of disease control, behavior against phytopathogens to understand different aspects of antagonism, and potential prospects for future explorations as antimicrobial agents. Understanding and exploring the antimicrobial lipopeptides from bacteria and fungi could also open upan entire new arena of biopesticides for effective control of devastating plant diseases.
    Print ISSN: 1661-7827
    Electronic ISSN: 1660-4601
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-03-01
    Print ISSN: 1084-0699
    Electronic ISSN: 1943-5584
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-02-12
    Description: Salt stress hampers plant growth and development. It is now becoming one of the most important threats to agricultural productivity. Rhizosphere microorganisms play key roles in modulating cellular responses and enable plant tolerant to salt stress, but the detailed mechanisms of how this occurs need in-depth investigation. The present study elucidated that the microbe-mediated restructuring of the cellular responses leads to ecological fitness and adaptiveness to the maize (Zea mays L.) grown in saline–sodic soil. In the present study, effects of seed biopriming with B. safensis MF-01, B. altitudinis MF-15, and B. velezensis MF-08 singly and in consortium on different growth parameters were recorded. Soil biochemical and enzymatic analyses were performed. The activity and gene expression of High-Affinity K+ Transporter (ZmHKT-1), Sodium/Hydrogen exchanger 1 (zmNHX1), and antioxidant enzymes (ZmAPX1.2, ZmBADH-1, ZmCAT, ZmMPK5, ZmMPK7, and ZmCPK11) were studied. The expression of genes related to lateral root development (ZmHO-1, ZmGSL-1, and ZmGSL-3) and root architecture were also carried out. Seeds bioprimed with consortium of all three strains have been shown to confer increased seed germination (23.34–26.31%) and vigor indices (vigor index I: 38.71–53.68% and vigor index II: 74.11–82.43%) as compared to untreated control plant grown in saline–sodic soil at 30 days of sowing. Results indicated that plants treated with consortium of three strains induced early production of adventitious roots (tips: 4889.29, forks: 7951.57, and crossings: 2296.45) in maize compared to plants primed with single strains and untreated control (tips: 2019.25, forks: 3021.45, and crossings: 388.36), which was further confirmed by assessing the transcript level of ZmHO-1 (7.20 folds), ZmGSL-1 (4.50 folds), and ZmGSL-3 (12.00 folds) genes using the qPCR approach. The uptake and translocation of Na+, K+, and Ca2+ significantly varied in the plants treated with bioagents alone or in consortium. qRT-PCR analysis also revealed that the ZmHKT-1 and zmNHX1 expression levels varied significantly in the maize root upon inoculation and showed a 6- to 11-fold increase in the plants bioprimed with all the three strains in combination. Further, the activity and gene expression levels of antioxidant enzymes were significantly higher in the leaves of maize subjected seed biopriming with bioagents individually or in combination (3.50- to 12.00-fold). Our research indicated that ZmHKT-1 and zmNHX1 expression could effectively enhance salt tolerance by maintaining an optimal Na+/K+ balance and increasing the antioxidant activity that keeps reactive oxygen species at a low accumulation level. Interestingly, up-regulation of ZmHKT-1, NHX1, ZmHO-1, ZmGSL-1, and ZmGSL-3 and genes encoding antioxidants regulates the cellular responses that could effectively enhance the adaptiveness and ultimately leads to better plant growth and grain production in the maize crop grown in saline–sodic soil.
    Electronic ISSN: 1664-302X
    Topics: Biology
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...