ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Monograph available for loan
    Monograph available for loan
    New York, NY : Oxford University Press
    Call number: PIK M 490-20-93929
    Type of Medium: Monograph available for loan
    Pages: xv, 417 Seiten , Diagramme
    ISBN: 9780199981151
    Language: English
    Note: Contents: PART I: BASICS ; 1. Population Dynamics ; 2. Simple Frequency Dependence ; 3. Dynamics in n-dimensional Games ; 4. Equilibrium ; 5. Social games ; 6. Cellular Automaton Games ; PART II: APPLICATIONS ; 7. Rock-Paper-Scissors Everywhere ; 8. Learning in Games ; 9. Contingent Life Cycle Strategies ; 10. The Blessing and the Curse of the Multiplicative Updates (Contributed by Manfred K. Warmuth) ; 11. Traffic Games (contributed by John Musacchio) ; 12. International Trade and the Environment (contributed by Matthew McGinty) ; 13. Evolution of Cooperation ; 14. Speciation ; Glossaries
    Location: A 18 - must be ordered
    Branch Library: PIK Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Physiology 66 (2004), S. 209-238 
    ISSN: 0066-4278
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Medicine , Biology
    Notes: Whereas comparative physiology documents the range of physiological variation across a range of organisms, field physiology provides insight into the actual mechanisms an organism employs to maintain homeostasis in its everyday life. This requires an understanding of an organism's natural history and is prerequisite to developing hypotheses about physiological mechanisms. This review focuses on a few areas of field physiology that exemplify how the underlying physiology could not have been understood without appropriate field measurements. The examples we have chosen highlight the methods and inference afforded by an application of this physiological analysis to organismal function in nature, often in extreme environments. The specific areas examined are diving physiology, the thermal physiology of large endothermic fishes, reproductive physiology of air breathing vertebrates, and endocrine physiology of reproductive homeostasis. These areas form a bridge from physiological ecology to evolutionary ecology. All our examples revolve around the central issue of physiological limits as they apply to organismal homeostasis. We view this theme as the cornerstone of physiological analysis and supply a number of paradigms on homeostasis that have been tested in the context of field physiology.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [s.l.] : Macmillian Magazines Ltd.
    Nature 406 (2000), S. 985-988 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] A long-standing hypothesis posits that natural selection can favour two female strategies when density cycles. At low density, females producing many smaller progeny are favoured when the intrinsic rate of increase, r, governs population growth. At peak density, females producing fewer, ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-1939
    Keywords: Growth ; Temperature ; Lizards ; Thermal sensitivity ; Life history
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary To investigate the physiological, behavioral, and genetic contributions to growth rate, we studied the thermal sensitivity of growth rate in hatchlings of the iguanid lizards Sceloporus occidentalis and S. graciosus in the laboratory. We used a cycling thermal regime patterned after thermal environments found in nature. Growth rates increased with duration of access to radiant heat. Thus, variation in the thermal environment can cause phenotypic variation in growth rate and hence body size. The two species differed in both the magnitude and thermal sensitivity of growth rate, and these differences were associated with differences in behavioral thermoregulation. Thus, growth is determined interactively by both behavior and physiology. We found evidence of among-family variation in the growth rates of S. occidentalis, suggesting that growth rate has the genetic potential to evolve. In S. occidentalis, both growth rate and egg size affected body size of hatchlings at several weeks of age. In turn, hatchling size may affect fitness: for example, larger S. occidentalis hatchlings had higher sprint speeds and may therefore be more adept at capturing prey or evading predators. Our results demonstrate that growth rate has genetic, behavioral, and physiological components, and that the resulting effects on body size may have important consequences for ecological performance e.g., sprint speed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-1939
    Keywords: Growth ; Lizards ; Thermal sensitivity ; Body temperature ; Life history
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Hatchling Sceloporus occidentalis from northern populations (central Oregon) grow more slowly than hatchlings from southern populations (southern California) in nature. In this study, I determine whether this difference in growth rate results from differences in thermal environment and/or in thermoregulatory behavior. To determine the degree to which the thermal environment affects growth rate among populations, I reared hatchings from the northern and southern populations in a cycling thermal regime in one of three experimental treatments differing in access to radiant heat (6, 9, or 12 h radiant heat; remainder of 24 h at 15°C). I also measured the body temperature that each individual voluntarily selected over the course of the daily activity cycle. Growth rate varied positively with duration of access to radiant heat. Within the three treatments, individual growth rate was positively correlated with body temperature. Moreover, the difference in growth rate between the northern and southern populations was due in part to differences in behavior — individuals from northern populations selected lower body temperatures. I found that significant variation in body temperature was associated with family membership, suggesting that thermal physiology has a genetic basis. Moreover, growth rate was correlated with body temperature among families in each population suggesting a genetic correlation underlies the phenotypic correlations. Thus, genetically based variation in thermal physiology contributes to differences in growth rate among individuals within a population as well as to differences among populations.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  Contributions to Zoology (1383-4517) vol.71 (2002) nr.1/3 p.101
    Publication Date: 2015-05-08
    Description: The early stages of organogenesis in metazoans differ drastically between higher order taxa such as phyla and classes. The segmented germ band stage in insects, the nauplius stage of crustaceans, and the neurula/pharyngula stage in vertebrates are examples of this diversification. In striking contrast with this divergence, is the similarity of these stages within these taxa, i.e., within insects, crustaceans, and vertebrates. The early stages of organogenesis, or phylotypic stages, have, thus, remained very similar in most species since the evolutionary origin of the taxa. These phylotypic stages are considerably more similar to each other than to the earlier stages of cleavage and gastrulation. Cleavage and gastrulation stages display not only great variability, but also striking examples of apparent convergence among species in different phyla, for example in the many cases of epiblastic cleavage in yolk-rich eggs. This leads to the paradoxical situation that the overall similarity of cleavage and gastrulation stages is in general higher among metazoans than of the early stages of organogenesis, but within phyla and classes the situation is the reverse. We discuss data on cleavage, gastrulation, and early organogenesis and evaluate possible causes for conservation, homoplasy, and diversification in an attempt to throw light on this paradoxical situation. In addition, we discuss a hypothesis that has been proposed to explain the diversity of early stages of organogenesis at the level of metazoans and the similarity within many phyla and classes.
    Keywords: evolutionary conservation ; pleiotropy ; cleavage ; gastrulation ; organogenesis ; multicellularity ; phylotypic stage
    Repository Name: National Museum of Natural History, Netherlands
    Type: Article / Letter to the editor
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    In:  Contributions to Zoology vol. 71 no. 1/3, pp. 101-113
    Publication Date: 2024-01-12
    Description: The early stages of organogenesis in metazoans differ drastically between higher order taxa such as phyla and classes. The segmented germ band stage in insects, the nauplius stage of crustaceans, and the neurula/pharyngula stage in vertebrates are examples of this diversification. In striking contrast with this divergence, is the similarity of these stages within these taxa, i.e., within insects, crustaceans, and vertebrates. The early stages of organogenesis, or phylotypic stages, have, thus, remained very similar in most species since the evolutionary origin of the taxa. These phylotypic stages are considerably more similar to each other than to the earlier stages of cleavage and gastrulation. Cleavage and gastrulation stages display not only great variability, but also striking examples of apparent convergence among species in different phyla, for example in the many cases of epiblastic cleavage in yolk-rich eggs. This leads to the paradoxical situation that the overall similarity of cleavage and gastrulation stages is in general higher among metazoans than of the early stages of organogenesis, but within phyla and classes the situation is the reverse. We discuss data on cleavage, gastrulation, and early organogenesis and evaluate possible causes for conservation, homoplasy, and diversification in an attempt to throw light on this paradoxical situation. In addition, we discuss a hypothesis that has been proposed to explain the diversity of early stages of organogenesis at the level of metazoans and the similarity within many phyla and classes.
    Keywords: evolutionary conservation ; pleiotropy ; cleavage ; gastrulation ; organogenesis ; multicellularity ; phylotypic stage
    Repository Name: National Museum of Natural History, Netherlands
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-09-30
    Description: Climate change threatens global biodiversity by increasing extinction risk, yet few studies have uncovered a physiological basis of climate-driven species declines. Maintaining a stable body temperature is a fundamental requirement for homeothermic animals, and water is a vital resource that facilitates thermoregulation through evaporative cooling, especially in hot environments. Here, we explore the potential for thermoregulatory costs to underlie the community collapse of birds in the Mojave Desert over the past century in response to climate change. The probability of persistence was lowest for species occupying the warmest and driest sites, which imposed the greatest cooling costs. We developed a general model of heat flux to evaluate whether water requirements for evaporative cooling contributed to species’ declines by simulating thermoregulatory costs in the Mojave Desert for 50 bird species representing the range of observed declines. Bird species’ declines were positively associated with climate-driven increases in water requirements for evaporative cooling and exacerbated by large body size, especially for species with animal-based diets. Species exhibiting reductions in body size across their range saved up to 14% in cooling costs and experienced less decline than species without size reductions, suggesting total cooling costs as a mechanism underlying Bergmann’s rule. Reductions in body size, however, are unlikely to offset the 50 to 78% increase in cooling costs threatening desert birds from future climate change. As climate change spreads warm, dry conditions across the planet, water requirements are increasingly likely to drive population declines, providing a physiological basis for climate-driven extinctions.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2002-09-01
    Print ISSN: 0169-5347
    Electronic ISSN: 1872-8383
    Topics: Biology
    Published by Cell Press
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1995-05-01
    Print ISSN: 0169-5347
    Electronic ISSN: 1872-8383
    Topics: Biology
    Published by Cell Press
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...