ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Publication Date: 2013-06-12
    Description: [1]  We explore the application of GPS data to earthquake early warning and investigate whether the co-seismic ground deformation can be used to provide fast and reliable magnitude estimations and ground shaking predictions. We use an algorithm to extract the permanent static offset from GPS displacement time series and invert for the slip distribution on the fault plane, which is discretized into a small number of rectangular patches. We developed a completely “self-adapting” strategy in which the initial fault plane model is built based on a quick, approximate magnitude estimation, and is then allowed to increase in size based on the evolutionary magnitude estimation resulting from the slip inversion. Two main early warning outputs are delivered in real-time: magnitude and the along-strike extent of the rupture area. These are finally used to predict the expected ground shaking due to the finite source. We tested the proposed strategy by simulating real-time environments for three earthquakes. For the Mw 9.0, 2011 Tohoku-Oki earthquake our algorithm provides the first magnitude estimate of 8.2 at 39 sec after the origin time, and then gradually increases to 8.9 at 120 sec. The estimated rupture length remains constant from the outset at ~360 km. For the Mw 8.3, 2003 Tokachi-Oki earthquake the initial magnitude estimate is 8.5 at 24 sec and drops to 8.2 at 40 sec with a rupture length of 290 km. Finally, for the Mw 7.2, 2010 El Mayor-Cucapah earthquake the magnitude estimate is 7.0 from the outset with a rupture length of 140 km. The accuracy of the ground shaking prediction using the GPS-based magnitude and finite extent is significantly better than existing seismology-based point source approaches. This approach would also facilitate more rapid tsunami warnings
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...