ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Publication Date: 2019-06-28
    Description: Two turning vane designs were experimentally evaluated for corner 1 (downstream of the test section) of a 0.1-scale model of the NASA Lewis Research Center's proposed Altitude Wind Tunnel (AWT). Vane A was a controlled-diffusion airfoil shape; vane B was a circular-arc airfoil shape. The vane designs were tested over corner inlet Mach numbers from 0.16 to 0.465. Several modifications in vane setting angle and vane spacing were also evaluated for vane A. The overall performance obtained from total pressure rakes indicated that vane B had a slightly lower loss coefficient than vane A. At Mach 0.35 (the design Mach number without the engine exhaust removal scoop), the loss coefficients were 0.150 and 0.178 for vanes B and A, respectively. Resetting the vane A angle by -5 deg. (vane A10) to turn the flow toward the outside corner reduced the loss coefficient to 0.119. The best configuration (vane A10) was also tested with a simulated engine exhaust removal scoop. The loss coefficient for that configuration was 0.164 at Mach 0.41 (the approximate design Mach number with the scoop).
    Keywords: RESEARCH AND SUPPORT FACILITIES (AIR)
    Type: NASA-TP-2570 , E-2831 , NAS 1.60:2570
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: Wind tunnel diffuser performance is evaluated by comparing experimental data with analytical results predicted by an one-dimensional integration procedure with skin friction coefficient, a two-dimensional interactive boundary layer procedure for analyzing conical diffusers, and a two-dimensional, integral, compressible laminar and turbulent boundary layer code. Pressure, temperature, and velocity data for a 3.25 deg equivalent cone half-angle diffuser (37.3 in., 94.742 cm outlet diameter) was obtained from the one-tenth scale Altitude Wind Tunnel modeling program at the NASA Lewis Research Center. The comparison is performed at Mach numbers of 0.162 (Re = 3.097x19(6)), 0.326 (Re = 6.2737x19(6)), and 0.363 (Re = 7.0129x10(6)). The Reynolds numbers are all based on an inlet diffuser diameter of 32.4 in., 82.296 cm, and reasonable quantitative agreement was obtained between the experimental data and computational codes.
    Keywords: AERODYNAMICS
    Type: NASA-TM-88795 , E-3130 , NAS 1.15:88795 , Annual Conference of the National Technical Association; Jun 23, 1986 - Jun 28, 1986; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...