ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Advances in Space Research 14 (1994), S. 701-705 
    ISSN: 0273-1177
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-04-13
    Description: A non-fusuline foraminiferal fauna consisting of 20 genera and 27 species was documented from the middle part of the Xiala Formation at the Mujiucuo section of Xainza County, central Tibet. This fauna consists mostly of porcelaneous-walled genera such as Agathammina, Midiella, Hemigordiopsis, Neodiscus, Multidiscus , and a new genus Megacrassispirella Zhang gen. nov. These taxa indicate a Midian (Capitanian) age. The climatic amelioration, triggered by climatic warming after the Late Paleozoic Ice Age or by northern drift of the Lhasa Block, promoted diversification of the non-fusuline foraminifers in the middle part of the Xiala Formation. Warm oceanic currents also played an important role in bringing biota from low latitude areas to the northern Gondwanaland margin through the newly-formed Neotethys Ocean. One new genus, Megacrassispirella gen. nov., with Megacrassispirella xarlashanensis ( Wang, 1986 ) emend. Zhang as type species, and one new species, Agathammina vachardi Zhang sp. nov., are described.
    Print ISSN: 0096-1191
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-10-19
    Description: South China has become the most important area to establish a global stratigraphic framework of the Wuchiapingian Stage because complete Wuchiapingian sequences include the GSSPs for the base and top of the stage. As the markers of the Wuchiapingian GSSP, conodonts are the most important fossil group to establish the Wuchiapingian biostratigraphic framework. However, few documents have investigated in detail the conodont biostratigraphic succession through the entire Wuchiapingian Stage. Furthermore, the conodont taxonomy of several Wuchiapingian Clarkina species is still debated. Therefore, we here review all Wuchiapingian Clarkina species from South China and figure ontogenetic growth series from juvenile to adult individuals for each valid and important species in order to revise both Wuchiapingian conodont taxonomy and the biostratigraphic succession. Based on the Penglaitan, Dukou, and Nanjiang sections, seven conodont zones ( Clarkina postbitteri postbitteri , C . dukouensis , C . asymmetrica , C . leveni , C . guangyuanensis , C . transcaucasica , and C . orientalis ) are recognized. The Wuchiapingian Clarkina species lineage is also reviewed to confirm the conodont biostratigraphic framework. The Guadalupian-Lopingian boundary (GLB) interval represents a sequence boundary. The time framework of the pre-Lopingian extinction interval indicates that the beginning of the end-Guadalupian regression is in the upper part of the Jinogondolella postserrata Zone, and the beginning of the early Lopingian transgression is in the lower part of the Clarkina dukouensis Zone in South China.
    Print ISSN: 0022-3360
    Electronic ISSN: 1937-2337
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-11-25
    Description: The Permian timescale has developed over about two centuries of research to the current chronostratigraphic scale advocated by the Subcommission on Permian Stratigraphy of three series and nine stages: Cisuralian (lower Permian) – Asselian, Sakmarian, Artinskian, Kungurian; Guadalupian (middle Permian) – Roadian, Wordian, Capitanian; and Lopingian (upper Permian) – Wuchiapingian and Changhsingian. The boundaries of the Permian System are defined by global stratotype sections and points (GSSPs) and the numerical ages of those boundaries appear to be determined with a precision better than 1. Nevertheless, much work remains to be done to refine the Permian timescale. Precise numerical age control within the Permian is very uneven and a global polarity timescale for the Permian is far from established. Chronostratigraphic definitions of three of the nine Permian stages remain unfinished and various issues of marine biostratigraphy are still unresolved. In the non-marine Permian realm, much progress has been made in correlation, especially using palynomorphs, megafossil plants, conchostracans and both the footprints and bones of tetrapods (amphibians and reptiles), but many problems of correlation remain, especially the cross-correlation of non-marine and marine chronologies. The further development of a Permian chronostratigraphic scale faces various problems, including those of stability and priority of nomenclature and concepts, disagreements over changing taxonomy, ammonoid v. fusulinid v. conodont biostratigraphy, differences in the perceived significance of biotic events for chronostratigraphic classification and correlation problems between provinces. Future research on the Permian timescale should focus on GSSP selection for the remaining undefined stage bases, the definition and characterization of substages, and further development and integration of the Permian chronostratigraphic scale with radioisotopic, magnetostratigraphic and chemostratigraphic tools for calibration and correlation.
    Print ISSN: 0305-8719
    Electronic ISSN: 2041-4927
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-11-30
    Description: The Permian timescale has developed over about two centuries of research to the current chronostratigraphic scale advocated by the Subcommission on Permian Stratigraphy of three series and nine stages: Cisuralian (lower Permian) – Asselian, Sakmarian, Artinskian, Kungurian; Guadalupian (middle Permian) – Roadian, Wordian, Capitanian; and Lopingian (upper Permian) – Wuchiapingian and Changhsingian. The boundaries of the Permian System are defined by global stratotype sections and points (GSSPs) and the numerical ages of those boundaries appear to be determined with a precision better than 1. Nevertheless, much work remains to be done to refine the Permian timescale. Precise numerical age control within the Permian is very uneven and a global polarity timescale for the Permian is far from established. Chronostratigraphic definitions of three of the nine Permian stages remain unfinished and various issues of marine biostratigraphy are still unresolved. In the non-marine Permian realm, much progress has been made in correlation, especially using palynomorphs, megafossil plants, conchostracans and both the footprints and bones of tetrapods (amphibians and reptiles), but many problems of correlation remain, especially the cross-correlation of non-marine and marine chronologies. The further development of a Permian chronostratigraphic scale faces various problems, including those of stability and priority of nomenclature and concepts, disagreements over changing taxonomy, ammonoid v. fusulinid v. conodont biostratigraphy, differences in the perceived significance of biotic events for chronostratigraphic classification and correlation problems between provinces. Future research on the Permian timescale should focus on GSSP selection for the remaining undefined stage bases, the definition and characterization of substages, and further development and integration of the Permian chronostratigraphic scale with radioisotopic, magnetostratigraphic and chemostratigraphic tools for calibration and correlation.
    Print ISSN: 0305-8719
    Electronic ISSN: 2041-4927
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-03-08
    Description: The end-Permian extinction is typically ascribed to massive volcanic eruptions, but direct geochemical evidence linking the two independent events is generally lacking. Zinc is an important micronutrient of marine phytoplanktons, and Zn isotope ( 66 Zn) ratios of seawater are markedly higher than those of volcanic rocks and riverine waters. We conducted high-resolution Zn concentration and Zn isotope analyses on carbonate rocks across the Permian-Triassic boundary (PTB) in the Meishan section of south China. An abrupt increase of Zn concentration and a concomitant 0.5 decrease in 66 Zn occur ~35 k.y. before the mass extinction and carbon isotope ( 13 C) minima. Mass balance calculation demonstrates that a 0.5 negative shift in 66 Zn within thousands of years requires rapid and massive input of isotopically light Zn from volcanic ashes, hydrothermal inputs, and/or extremely fast weathering of large igneous provinces. A positive 66 Zn shift of as much as 1.0 following the mass extinction demonstrates that primary productivity recovered and reached a maximum in fewer than 360 k.y. Our finding provides insights into the marine Zn cycling across the PTB and clarifies the temporal relationship and duration of events, including intensive volcanism, carbon isotope excursion, mass extinction, and widespread ocean anoxia.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-12-11
    Description: Establishing a Permian brachiopod biochronological scheme for global correlation is difficult because of strong provincialism during the Permian. In this paper, a brief overview of brachiopod successions in five major palaeobiogeographical realms/zones is provided. For Gondwanaland and peri-Gondwanan regions including Cimmerian blocks, Bandoproductus and Punctocyrtella (or Cyrtella ) are characteristic of the lower Cisuralian, as is Cimmeriella for the middle Cisuralian. As the Cimmerian blocks continued drifting north during the late Kungurian, accompanied by climate amelioration, contemporaneous brachiopods inhabiting these blocks showed a distinct shift from cold-water to mixed or warm-water affinities. However, coeval brachiopods in the Northern Transitional Zone (NTZ) are characterized by warm-water faunas and are associated with fusulinids in the lower Cisuralian. The Guadalupian brachiopods of the NTZ were clearly mixed between the Boreal and palaeoequatorial affinities. The end-Guadalupian is marked by the disappearance of a few characteristic genera, such as Vediproductus , Neoplicatifera and Urushtenoidea , in the Palaeotethyan region. The onset of the end-Permian mass extinction in the latest Changhsingian is clearly exhibited by the occurrence of the dwarfed and thin-shelled brachiopods commonly containing Paracrurithyris .
    Print ISSN: 0305-8719
    Electronic ISSN: 2041-4927
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-12-21
    Description: We investigated the kill mechanisms of the end-Permian mass extinction by analyzing patterns in biomineralization of marine invertebrates. The microstructures of Upper Permian brachiopod organocarbonate shells show the demise of the production of fabrics with a columnar layer—which has less organic matrix—in favor of more organic-rich shells at the end of Permian. Also, in the 100–120 k.y. interval prior to the Permian-Triassic boundary (PTB), the Rhynchonellata had small calcite structural units (fibers) and thus a higher shell organic content, whereas the Strophomenata were not able to produce smaller units. This suggests that the two classes had a different capacity to cope with environmental change, with the Rhynchonellata being more able to buffer against pH changes and surviving the PTB, whereas the Strophomenata became extinct. The observed trends in biomineralization are similar to the patterns in extant marine invertebrates exposed to increasing p CO 2 and decreasing pH, indicating that ocean acidification could have been one of the kill mechanisms of the mass extinction at the PTB.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-08-01
    Description: End-Permian (ca. 252 Ma) carbon isotope, paleobiological, and sedimentary data suggest that changes in ocean carbonate chemistry were directly linked to the mass extinction of marine organisms. Calcium isotopes provide a geochemical means to constrain the nature of these changes. The 44/40 Ca of carbonate rocks from southern China exhibits a negative excursion across the end-Permian extinction horizon, consistent with either a negative shift in the 44/40 Ca of seawater or a change in the calcite/aragonite ratio of carbonate sediments at the time of deposition. To test between these possibilities, we measured the 44/40 Ca of hydroxyapatite conodont microfossils from the global stratotype section and point (GSSP) for the Permian-Triassic boundary at Meishan, China. The conodont 44/40 Ca record shows a negative excursion similar in stratigraphic position and magnitude to that previously observed in carbonate rocks. Parallel negative excursions in the 44/40 Ca of carbonate rocks and conodont microfossils cannot be accounted for by a change in carbonate mineralogy, but are consistent with a negative shift in the 44/40 Ca of seawater. Such a shift is best accounted for by an episode of ocean acidification, pointing toward strong similarities between the greatest catastrophe in the history of animal life and anticipated global change during the twenty-first century.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-03-05
    Description: The end-Permian mass extinction was the most severe loss of marine and terrestrial biota in the last 542 My. Understanding its cause and the controls on extinction/recovery dynamics depends on an accurate and precise age model. U-Pb zircon dates for five volcanic ash beds from the Global Stratotype Section and...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...