ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: The recent Brine Processing Test compared the NASA Forward Osmosis Brine Dewatering (FOBD), Paragon Ionomer Water Processor (IWP), UMPQUA Ultrasonic Brine Dewatering System (UBDS), and the NASA Brine Evaporation Bag (BEB). This paper reports the results of the BEB. The BEB was operated at 70 deg C and a base pressure of 12 torr. The BEB was operated in a batch mode, and processed 0.4L of brine per batch. Two different brine feeds were tested, a chromic acid-urine brine and a chromic acid-urine-hygiene mix brine. The chromic acid-urine brine, known as the ISS Alternate Pretreatment Brine, had an average processing rate of 95 mL/hr with a specific power of 5kWhr/L. The complete results of these tests will be reported within this paper.
    Keywords: Man/System Technology and Life Support
    Type: ICES-2015-67 , ARC-E-DAA-TN24688 , International Conference on Environmental Systems; Jul 12, 2015 - Jul 16, 2015; Bellevue, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-25
    Description: The effluent gas for the Paragon Ionomer Water Processor (IWP), UMPQUA Ultrasonic Brine Dewatering System (UBDS), and the NASA Brine Evaporation Bag (BEB) were analyzed using Headspace GCMS Analysis in the recent AES FY14 Brine Processing Test. The results from the analysis describe the number and general chemical species of the chemicals produced. Comparisons were also made between the different chromatograms for each system, and an explanation of the differences in the results is reported.
    Keywords: Chemistry and Materials (General); Space Sciences (General)
    Type: ICES-2015-69 , ARC-E-DAA-TN24689 , ARC-E-DAA-TN21546 , International Conference on Environmental Systems; Jul 12, 2015 - Jul 16, 2015; Bellevue, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-20
    Description: The Brine Evaporation Bag (BEB) is a membrane-based bag system for the dewatering of brine. Previous studies showed the ability of the BEB to dewater brine at low temperatures with a 96 percent mass reduction. Additionally, a microgravity flight showed the BEB is microgravity compatible. Current work focuses on the effects of temperature, vacuum, purge gas flow rate, membrane area, and membrane permeability on the rate of dewatering within a vacuum oven configured to mimic the Heat Melt Compactor. Within this study, it was found that changing the temperature or level of vacuum would change the rate of dewatering. The purge gas, membrane area, and membrane permeability did not affect the dewater rate. The reason for this behavior may be that the dewatering is heat transfer limited, and out of all the parameters studied, only the temperature and vacuum have an effect on the heat transfer rate. The ISS (International Space Station) produces brine at a rate of 1.2 liters per day. This initial study showed that it is possible to remove water from a BEB at a rate of 1.6 liters per day in this breadboard configuration; even at moderate temperatures. Development of a dedicated BEB Evaporator will be discussed. In addition, it is further postulated that a specifically designed BEB Evaporator would result in an increased dewatering rate allowing for even lower operating temperatures or faster dewatering rates.
    Keywords: Man/System Technology and Life Support
    Type: ICES-2014-017 , ARC-E-DAA-TN13745 , International Conference on Environmental Systems (ICES 2014); Jul 13, 2014 - Jul 17, 2014; Tucson, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-20
    Description: The existing water recovery system on the International Space Station (ISS) is limited to 70 percent reclamation; consequently, long duration space missions are currently unfeasible due to the large quantity of water necessary to sustain the crew. The Brine Evaporation Bag (BEB) is a proposed system to supplement the existing water recovery system aboard the ISS and future deep space missions that can increase water recovery to 99 percent. The BEB project previously focused on the development of only the bag portion of the system. This paper focuses on the development of the BEB Evaporator. It will discuss the work to understand, optimize, and improve the entire BEB system while implementing a continuous-fill process. The results of that development and the advantages and limitations of the continuous-fill process will be presented.
    Keywords: Man/System Technology and Life Support
    Type: ICES-2016-142 , ARC-E-DAA-TN33508 , ARC-E-DAA-TN30153 , International Conference on Environmental Systems (ICES 2016); Jul 10, 2016 - Jul 14, 2016; Vienna; Austria
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-20
    Description: The Brine Evaporation Bag (BEB) recently participated in the Brine Concentrator Technology (BCT) Technology Down-Select (TDS). It was found that the BEB System is able to process ISS (International Space Station) Alternate Pretreat Brine at a rate high enough for ISS application as well as future deep space missions. The BEB System is also capable of processing the brine to a solid residue which will add to the stability and safety of storing the brine residue. The results of the BEB testing for the BCT-TDS will be presented in this paper.
    Keywords: Man/System Technology and Life Support
    Type: ICES-2016-143 , ARC-E-DAA-TN33510 , ARC-E-DAA-TN30154 , International Conference on Environmental Systems (ICES 2016); Jul 10, 2016 - Jul 14, 2016; Vienna; Austria
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: Brine drying systems may be used in spaceflight. There are several advantages to using brine processing technologies for long-duration human missions including a reduction in resupply requirements and achieving high water recovery ratios. The objective of this project was to evaluate four technologies for the drying of spacecraft water recycling system brine byproducts. The technologies tested were NASA's Forward Osmosis Brine Drying (FOBD), Paragon's Ionomer Water Processor (IWP), NASA's Brine Evaporation Bag (BEB) System, and UMPQUA's Ultrasonic Brine Dewatering System (UBDS). The purpose of this work was to evaluate the hardware using feed streams composed of brines similar to those generated on board the International Space Station (ISS) and future exploration missions. The brine formulations used for testing were the ISS Alternate Pretreatment and Solution 2 (Alt Pretreat). The brines were generated using the Wiped-film Rotating-disk (WFRD) evaporator, which is a vapor compression distillation system that is used to simulate the function of the ISS Urine Processor Assembly (UPA). Each system was evaluated based on the results from testing and Equivalent System Mass (ESM) calculations. A Quality Function Deployment (QFD) matrix was also developed as a method to compare the different technologies based on customer and engineering requirements.
    Keywords: Engineering (General); Life Sciences (General); Man/System Technology and Life Support
    Type: ICES-2015-202 , ARC-E-DAA-TN23936 , International Conference on Environmental Systems (ICES); Jul 12, 2015 - Jul 16, 2015; Bellevue, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: FOST 2 is an integrated membrane system that incorporates a forward osmosis subsystem and a reverse osmosis subsystem working in series. It has been designed as a post treatment system to process the effluent from the Membrane Aerated Biological Reactor developed at NASA Johnson Space Center and Texas Tech University. Its function is to remove dissolved solids residual such as ammonia and suspended solids, as well as to provide a physical barrier to microbial and viral contamination. A tubular CTA membrane module from HTI and a flat-sheet lipid-base membrane module from Porifera were integrated and tested on FOST 2 in the past, using both a bioreactor's effluent and greywater as the feed solution. This paper documents the performance of FOST 2 after its upgrade with a hollow-fiber CTA membrane module from Toyobo, treating real black-water to generate the osmotic agent solution necessary to conduct growth studies of genetically engineered microorganism for the Synthetic Biological Membrane project.
    Keywords: Technology Utilization and Surface Transportation; Man/System Technology and Life Support
    Type: ICES-2016-190 , ARC-E-DAA-TN32145 , International Conference on Environmental Systems (ICES 2016); Jul 10, 2016 - Jul 14, 2016; Vienna; Austria
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: This survey describes brine drying technologies that have been developed for use in space and industry. NASA has long considered developing a brine drying system for the International Space Station (ISS). Possible processes include conduction drying in many forms, spray drying, distillation, freezing and freeze drying, membrane filtration, and electrical processes. Commercial processes use similar technologies. Some proposed space systems combine several approaches. The current most promising candidates for use on the ISS use either conduction drying with membrane filtration or spray drying.
    Keywords: Chemistry and Materials (General)
    Type: ICES-2014-072 , ARC-E-DAA-TN16106 , International Conference on Environmental Systems (ICES 2014); Jul 13, 2014 - Jul 17, 2014; Tucson, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: The Forward Osmosis Brine Drying (FOBD) system is based on a technique called forward osmosis (FO). FO is a membrane-based process where the osmotic potential between brine and a salt solution is equalized by the movement of water from the brine to the salt solution. The FOBD system is composed of two main elements, the FO bag and the salt regeneration system. This paper discusses the results of testing of the FO bag to determine the maximum water recovery ratio that can be attained using this technology. Testing demonstrated that the FO bag is capable of achieving a maximum brine water recovery ratio of the brine of 95%. The equivalent system mass was calculated to be 95 kg for a feed similar to the concentrated brine generated on the International Space Station and 86 kg for an Exploration brine. The results have indicated that the FOBD can process all the brine for a one year mission for between 11% to 10% mass required to bring the water needed to make up for water lost in the brine if not recycled. The FOBD saves 685 kg and when treating the International Space Station brine and it saves 829 kg when treating the Exploration brine. It was also demonstrated that saturated salt solutions achieve a higher water recovery ratios than solids salts do and that lithium chloride achieved a higher water recovery ratio than sodium chloride.
    Keywords: Inorganic, Organic and Physical Chemistry
    Type: ICES-2015-219 , ARC-E-DAA-TN24500 , International Conferance on Environmental Systems; Jul 12, 2015 - Jul 16, 2015; Bellevue, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: The existing water recovery system on the International Space Station (ISS) is limited to 70 percent reclamation; consequently, long duration space missions are currently unfeasible due to the large quantity of water necessary to sustain the crew. The Brine Evaporation Bag (BEB) is a proposed system to supplement the existing water recovery system aboard the ISS and future deep space missions that can increase water recovery to 99 percent. The BEB project previously focused on the development of only the bag portion of the system. This paper focuses on the development of the BEB Evaporator. It will discuss the work to understand, optimize, and improve the entire BEB system while implementing a continuous-fill process. The results of that development and the advantages and limitations of the continuous-fill process will be presented.
    Keywords: Man/System Technology and Life Support
    Type: ARC-E-DAA-TN33508-2 , International Conference on Environmental Systems; Jul 10, 2016 - Jul 14, 2016; Vienna; Austria
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...