ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-12-09
    Description: Reconstructions of Quaternary climate are often based on the isotopic content of paleo-precipitation preserved in proxy records. While many paleo-precipitation isotope records are available, few studies have synthesized these dispersed records to explore spatial patterns of late-glacial precipitation δ18O. Here we present a synthesis of 86 globally distributed groundwater (n = 59), 
cave calcite (n = 15) and ice core (n = 12)
 isotope records spanning the late-glacial (defined as
 ~ 50000 to ∼ 20000 years ago) to the late-Holocene (within the past ∼5000 years). We show that precipitation δ18O changes from the late-glacial to the late-Holocene range from −7.1 ‰ (δ18Olate-Holocene 〉 δ18Olate-glacial) to +1.7 ‰ (δ18Olate-glacial 〉 δ18Olate-Holocene), with the majority (77 %) of records having lower late-glacial δ18O than late-Holocene δ18O values. High-magnitude, negative precipitation δ18O shifts are common at high latitudes, high altitudes and continental interiors (δ18Olate-Holocene 〉 δ18Olate-glacial by more than 3‰). Conversely, low-magnitude, positive precipitation δ18O shifts are concentrated along tropical and subtropical coasts (δ18Olate-glacial 〉 δ18Olate-Holocene by less than 2 ‰). Broad, global patterns of late-glacial to late-Holocene precipitation δ18O shifts suggest that stronger-than-modern isotopic distillation of air masses prevailed during the late-glacial, likely impacted by larger global temperature differences between the tropics and the poles. Further, to test how well general circulation models reproduce global precipitation δ18O shifts, we compiled simulated precipitation δ18O shifts from five isotope-enabled general circulation models simulated under recent and last glacial maximum climate states. Climate simulations generally show better inter-model and model-measurement agreement in temperate regions than in the tropics, highlighting a need for further research to better understand how inter-model spread in convective rainout, seawater δ18O and glacial topography parameterizations impact simulated precipitation δ18O. Future research on paleo-precipitation δ18O records can use the global maps of measured and simulated late-glacial precipitation isotope compositions to target and prioritize field sites.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-04-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-17
    Description: In 2009 the Alfred-Wegener-Institute organised an inter-laboratory comparison for analysing the oxygen isotope compositions of biogenic silica. The relationship of the oxygen isotope compositions of carbonate to climate-relevant parameters is widely utilized. However, challenges still exist in the use of biogenic silica. Problems arise during the sample preparation stage and during the isotopic analysis itself. The problems are commonly related to the removal of loosely bound exchangeable oxygen from the silica. Amorphous silica contains OH groups within the SiO2 skeleton as well as chemically combined water. The OH groups and chemically combined water must be removed prior to analysis as their oxygen is easily exchanged following silica formation and thus does not reflect the original isotopic composition of the water. Various methods have been established in the past 20 years for the dehydration and dehydroxylation of amorphous silica, including Controlled Isotopic Exchange (CIE) followed by fluorination, Stepwise Fluorination (SWF) and inductive High-Temperature carbon reduction (iHTR). A new method under consideration is Helium Flow Dehydration (HFD) followed by fluorination. These methods have never been compared in a comprehensive interlaboratory comparison.This inter-laboratory comparison should function as a method performance study as well as a material certification study. The studys goals are:1. To evaluate the agreement of δ18O results in terms of accuracy and reproducibility among different methods in different laboratories, and2. To provide the δ18OSi community with well-calibrated biogenic standards covering a large range of δ18O values.The second goal is related to the current existence of only one quartz standard (NBS-28) made available by IAEA as a reference material for analysis of oxygen isotopes from SiO2. There is a need for natural biogenic reference materials with oxygen isotopic compositions in the range of naturally occurring lacustrine and marine sediments. Six different samples so far only used as internal standards in the participating laboratories have been analysed by eight different laboratories using their typical analytical methods. The samples cover a wide-range of δ18O values (23 to 43 ) and originate from lacustrine and marine sediment deposits as well as from chemically precipitated amorphous silica. The samples consist of diatoms, phytoliths or synthetical nano-spheres. Each laboratory has analysed each sample at least ten times on various days to evaluate reproducibility. X-ray fluorescence (XRF) and X-ray diffraction (XRD) analyses have also been performed to verify the purity and the structure of the proposed standards. The XRF analysis of the six standards indicates SiO2 contents ranging from 94 to 99%. The XRD analyses showed that five of the standards have a broad, pure amorphous silica (opal-A) peak whereas one (Kieselguhr) is crystalline, with crystobalite bands resulting from pre-calcination performed by the supplying company.At the time of this abstract submission the laboratories were completing their analyses. Preliminary results will be presented at the meeting. Based on these results, we hope to recommend up to six biogenic silica standards for δ18OSi values with a reproducibility of better than ±0.3 . We will also evaluate the various methods in terms of the analytical uncertainties accompanying each approach.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of metamorphic geology 12 (1994), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: The intracrystalline diffusion rate of oxygen in diopside was constrained based on natural isotopic variations from a granulite facies marble from Cascade Slide, Adirondacks (New York, USA). The oxygen isotope compositions of the diopsides, measured as a function of grain size, are nearly constant (20.9 ± 0.3‰ vs. SMOW) over the entire measured size range (0.3–3.2 mm diameter). The δ18O values of the cores of calcite grains are 23.0‰. Temperature estimates based on the Δ18O(calcite-diopside) are 800d̀C, in agreement with the highest previous thermometric estimates for these rocks.The lack of isotopic variation in the diopsides as a function of grain size requires that the oxygen intracrystalline diffusion rate in diopside from the Adirondack samples was very slow. The maximum diffusion rates (D800d̀C parallel to the c-axis) were calculated with an infinite reservoir model (IRM) and a finite reservoir model (FRM) that incorporates mineral modal abundances and initial isotopic variations. For an assumed activation energy (Q) = 100 kJ/mol, the IRM diffusion rate estimate of 1.6 times 10-20cm2/s is two orders of magnitude faster than from the FRM; at Q=500kJ/mol, the D800d̀C estimate for both methods is c. 5.6 times 10-20 cm2/s. The present results require that a hydrothermal fluid significantly enhances the diffusion rate of oxygen in diopside if previous data are correct.The δ18O(SMOW) and δ13C(PDB) values of the calcite, measured in situ with a CO2 laser, are 22.9 ± 0.3, 0.1±0.3‰ in the grain cores, 22.1 ±0.3, 0.2 ±0.1‰ at the grain boundaries and 21.7 ±0.4, -0.6±0.1‰ abutting diopside grains. The δ18O and δ13δC values measured conventionally are: crystal cores, 22.96, -0.95‰; abutting diopside grains, 22.38, -0.93‰; bulk, 22.79, -0.95%. Use of the bulk δ18O(calcite) values for thermometry yields unreasonably high temperatures. The lower δ18O values at the calcite grain boundaries are not due to retrograde diffusional exchange with the diopside, they are thought to be a result of a late retrograde fluid infiltration.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Inc
    Journal of metamorphic geology 21 (2003), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: The Priest pluton contact aureole in the Manzano Mountains, central New Mexico preserves evidence for upper amphibolite contact metamorphism and localized retrograde hydrothermal alteration associated with intrusion of the 1.42 Ga Priest pluton. Quartz–garnet and quartz–sillimanite oxygen isotope fractionations in pelitic schist document an increase in the temperatures of metamorphism from 540 °C, at a distance of 1 km from the pluton, to 690 °C at the contact with the pluton. Comparison of calculated temperature estimates with one-dimensional thermal modelling suggests that background temperatures between 300 and 350 °C existed at the time of intrusion of the Priest pluton. Fibrolite is found within 300 m of the Priest pluton in pelitic and aluminous schist metamorphosed at temperatures 〉580 °C. Coexisting fibrolite and garnet in pelitic schist are in oxygen isotope equilibrium, suggesting these minerals were stable reaction products during peak metamorphism. The fibrolite-in isograd is coincident with the staurolite-out isograd in pelitic schist, and K-feldspar is not observed with the first occurrence of fibrolite. This suggests that the breakdown of staurolite and not the second sillimanite reaction controls fibrolite growth in staurolite-bearing pelitic schist. Muscovite-rich aluminous schist locally preserves the Al2SiO5 polymorph triple-point assemblage – kyanite, andalusite and fibrolite. Andalusite and fibrolite, but not kyanite, are in isotopic equilibrium in the aluminous schist. Co-nucleation of fibrolite and andalusite at 580 °C in the presence of muscovite and absence of K-feldspar suggests that univariant growth of andalusite and fibrolite occurred. Kyanite growth occurred during an earlier regional metamorphic event at a temperature nearly 80 °C lower than andalusite and fibrolite growth. Quartz–muscovite fractionations in hydrothermally altered pelitic schist and quartzite are small or negative, suggesting that late isotopic exchange between externally derived fluids and muscovite, but not quartz, occurred after peak contact metamorphism and that hydrothermal alteration in pelitic schist and quartzite occurred below the closure temperature of oxygen self diffusion in quartz (〈500 °C).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Inc
    Journal of metamorphic geology 23 (2005), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Oxygen-isotope compositions of kyanite, andalusite, prismatic sillimanite and fibrolite from the Proterozoic terrane in the Truchas Mountains, New Mexico differ from one another, suggesting that these minerals did not grow in equilibrium at the Al2SiO5 (AS) polymorph-invariant point as previously suggested. Instead, oxygen-isotope temperature estimates indicate that growth of kyanite, andalusite and prismatic sillimanite occurred at c. 575, 615 and 640 °C respectively. Temperature estimates reported in this paper are interpreted as those of growth for the different AS polymorphs, which are not necessarily the same as peak metamorphic temperatures for this terrane. Two distinct temperature estimates of c. 580 °C and c. 700 °C are calculated for most fibrolite samples, with two samples yielding clear evidence of quartz-fibrolite oxygen-isotope disequilibrium. These data indicate that locally, and potentially regionally, oxygen-isotope disequilibrium between quartz and fibrolite may have resulted from rapid fibrolite nucleation. Pressures of mineral growth that were extrapolated from oxygen-isotope thermometry results and calculated using petrological constraints suggest that kyanite and one generation of fibrolite grew during M1 at 5 kbar, and that andalusite, prismatic sillimanite and a second generation of fibrolite grew during M2 at 3.5 kbar. M1 and M2 therefore represent two distinct metamorphic events that occurred at different crustal levels. The ability of the AS polymorphs to retain δ18O values of crystallization make these minerals ideal to model prograde-growth histories of mineral assemblages in metamorphic terranes and to understand more clearly the pressure–temperature histories of multiple metamorphic events.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Inc
    Journal of metamorphic geology 22 (2004), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: The Greiner shear zone in the Tauern Window, Eastern Alps, changes from a zone of distributed (dominantly sinistral) shear in supracrustal rocks to a series of narrow, gully forming dextral splays where it enters basement gneisses. Within these splays, granodiorite is transformed into quartz-poor biotite and/or chlorite schists, reflecting hydration, removal of Si, Ca and Na, and concentration of Fe, Mg and Al. Stable isotope analyses show a prominent increase in δD and a decrease in δ18O from granodiorite into the shear zones. These changes indicate significant channelized flow of an externally derived, low-δ18O, high-δD fluid through the shear zones. The shear zone schists are chemically similar to blackwall zones developed around serpentinite bodies elsewhere in the Greiner zone and the stable isotope data support alteration via serpentinite-derived fluid. Monazite in schist from one shear zone yields spot dates of 29–20 Ma, indicating that the fluid influx and switch from sinistral to dextral shear occurred at or shortly after the thermal peak of the Alpine orogeny (c. 30 Ma). We suggest that Alpine metamorphism of serpentinites released large amounts of high-δD, low-δ18O, Si-undersaturated, Fe + Mg-saturated fluids that became channelized along prior zones of weakness in the granodiorite. Infiltration of this fluid facilitated growth of chlorite and biotite, which in turn localized later dextral strain in the narrow splays via cleavage-parallel slip. This dextral strain event can be linked to other structures that accommodated tectonic escape of major crustal blocks during dextral transpression in the Eastern Alps. This study shows that serpentinite devolatilization can play an important role in modifying both the chemistry and rheology of surrounding rocks during orogenesis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...