ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-05-10
    Print ISSN: 0295-5075
    Electronic ISSN: 1286-4854
    Topics: Physics
    Published by Institute of Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-09-10
    Description: With the swift evolution of wireless technologies, the demand for the Internet of Things (IoT) security is rising immensely. Elliptic curve cryptography (ECC) provides an attractive solution to fulfill this demand. In recent years, Edwards curves have gained widespread acceptance in digital signatures and ECC due to their faster group operations and higher resistance against side-channel attacks (SCAs) than that of the Weierstrass form of elliptic curves. In this paper, we propose a high-speed, low-area, simple power analysis (SPA)-resistant field-programmable gate array (FPGA) implementation of ECC processor with unified point addition on a twisted Edwards curve, namely Edwards25519. Efficient hardware architectures for modular multiplication, modular inversion, unified point addition, and elliptic curve point multiplication (ECPM) are proposed. To reduce the computational complexity of ECPM, the ECPM scheme is designed in projective coordinates instead of affine coordinates. The proposed ECC processor performs 256-bit point multiplication over a prime field in 198,715 clock cycles and takes 1.9 ms with a throughput of 134.5 kbps, occupying only 6543 slices on Xilinx Virtex-7 FPGA platform. It supports high-speed public-key generation using fewer hardware resources without compromising the security level, which is a challenging requirement for IoT security.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-12-06
    Description: Optical camera communication (OCC) is a technology in which a camera image sensor is employed to receive data bits sent from a light source. OCC has attracted a lot of research interest in the area of mobile optical wireless communication due to the popularity of smartphones with embedded cameras. Moreover, OCC offers high-performance characteristics, including an excellent signal-to-interference-plus-noise ratio (SINR), high security, low interference, and high stability with respect to varying communication distances. Despite these advantages, OCC suffers from several limitations, the primary of which is the low data rate. In this paper, we provide a comprehensive analysis of the parameters that influence the OCC performance. These parameters include the camera sampling rate, the exposure time, the focal length, the pixel edge length, the transmitter configurations, and the optical flickering rate. In particular, the focus is on enhancing the data rate, SINR, and communication distance, which are the principal factors determining the quality of service experienced by a user. The paper also provides a short survey of modulation schemes used in OCC on the basis of the achieved data rate, communication distance, and possible application scenarios. A theoretical analysis of user satisfaction using OCC is also rendered. Furthermore, we present the simulation results demonstrating OCC performance with respect to variations in the parameters mentioned above, which include the outage probability analysis for OCC.
    Electronic ISSN: 2076-3417
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-19
    Description: Visible light and infrared bands of the optical spectrum used for optical camera communication (OCC) are becoming a promising technology nowadays. Researchers are proposing new OCC-based architectures and applications in both indoor and outdoor systems using the embedded cameras on smartphones, with a view to making them user-friendly. Smartphones have useful features for developing applications using the complementary metal-oxide-semiconductor cameras, which can receive data from optical transmitters. However, several challenges have arisen in increasing the capacity and communication range, owing to the limitations of current cameras and implementation complexities. In this paper, we provide a comprehensive analysis of the OCC technology requirements and opportunities using smartphone cameras from an implementation point of view. Furthermore, we demonstrate an OCC system using a low frame rate smartphone camera to particularly analyze the requirements and critical implementation challenges. Also, some possible solutions are provided with a view to improving the overall system capacity, communication distance, and stability.
    Electronic ISSN: 2079-9292
    Topics: Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-10-16
    Description: The upcoming fifth- and sixth-generation (5G and 6G, respectively) communication systems are expected to deal with enormous advances compared to the existing fourth-generation communication system. The few important and common issues related to the service quality of 5G and 6G communication systems are high capacity, massive connectivity, low latency, high security, low-energy consumption, high quality of experience, and reliable connectivity. Of course, 6G communication will provide several-fold improved performances compared to the 5G communication regarding these issues. The Internet of Things (IoT) based on the tactile internet will also be an essential part of 5G-and-beyond (5GB) (e.g., 5G and 6G) communication systems. Accordingly, 5GB wireless networks will face numerous challenges in supporting the extensive verities of heterogeneous traffic and in satisfying the mentioned service-quality-related parameters. Optical wireless communication (OWC), along with many other wireless technologies, is a promising candidate for serving the demands of 5GB communication systems. This review paper clearly presents how OWC technologies, such as visible light communication, light fidelity, optical camera communication, and free space optics communication, will be an effective solution for successful deployment of 5G/6G and IoT systems.
    Electronic ISSN: 2076-3417
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-03-09
    Description: Research on electronic healthcare (eHealth) systems has increased dramatically in recent years. eHealth represents a significant example of the application of the Internet of Things (IoT), characterized by its cost effectiveness, increased reliability, and minimal human eff ort in nursing assistance. The remote monitoring of patients through a wearable sensing network has outstanding potential in current healthcare systems. Such a network can continuously monitor the vital health conditions (such as heart rate variability, blood pressure, glucose level, and oxygen saturation) of patients with chronic diseases. Low-power radio-frequency (RF) technologies, especially Bluetooth low energy (BLE), play significant roles in modern healthcare. However, most of the RF spectrum is licensed and regulated, and the effect of RF on human health is of major concern. Moreover, the signal-to-noise-plus-interference ratio in high distance can be decreased to a considerable extent, possibly leading to the increase in bit-error rate. Optical camera communication (OCC), which uses a camera to receive data from a light-emitting diode (LED), can be utilized in eHealth to mitigate the limitations of RF. However, OCC also has several limitations, such as high signal-blockage probability. Therefore, in this study, a hybrid OCC/BLE system is proposed to ensure efficient, remote, and real-time transmission of a patient’s electrocardiogram (ECG) signal to a monitor. First, a patch circuit integrating an LED array and BLE transmitter chip is proposed. The patch collects the ECG data according to the health condition of the patient to minimize power consumption. Second, a network selection algorithm is developed for a new network access request generated in the patch circuit. Third, fuzzy logic is employed to select an appropriate camera for data reception. Fourth, a handover mechanism is suggested to ensure efficient network allocation considering the patient’s mobility. Finally, simulations are conducted to demonstrate the performance and reliability of the proposed system.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...