ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
  • 2
    Publication Date: 2006-02-01
    Print ISSN: 0300-8177
    Electronic ISSN: 1573-4919
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2006-07-14
    Print ISSN: 0300-8177
    Electronic ISSN: 1573-4919
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-11-15
    Description: Red cells synthesize large amounts of heme during terminal differentiation. Central to this process is the transport and trafficking of heme synthesis intermediates within the cell. Despite the importance of transport during heme synthesis, the molecules involved in this process are largely unknown. In a screen for genes that are upregulated during erythroid terminal differentiation, we identified Tmem14c, a predicted multi-pass transmembrane protein as an essential component of the porphyrin metabolism pathway. Here, we report that Tmem14c facilitates the synthesis of mitochondrial protoporphyrin IX from coproporphyrinogen III and is thus required for heme synthesis. Tmem14c is a mitochondrial inner-membrane protein enriched in vertebrate hematopoietic tissues and is required for terminal erythropoiesis. Tmem14c gene-trap mouse embryos are severely anemic and mostly die by E13.5 (Fig. A). Fetal liver erythroid cells derived from gene-trap embryos experience maturation arrest. shRNA silencing of Tmem14c in Friend murine erythroleukemia (MEL) cells results in a significant decrease in de-novo heme synthesis. The biochemical defect is due to a decrease in mitochondrial protoporphyrin IX synthesis, while cytoplasmic porphyrin levels remain normal (Fig. B). The heme synthesis defect in Tmem14c-silenced MEL cells is complemented with a protoporphyrin IX analog. These data show the role of Tmem14c in regulating the terminal steps in mitochondrial porphyrin trafficking. Our findings collectively demonstrate that Tmem14c is required for the transport of mitochondrial porphyrins in developing erythroid cells. Due to its inner-mitochondrial localization and its relative proximity to heme synthetic enzymes coproporphyrinogen oxidase and protoporphyrinogen oxidase (Rhee et al., 2013 Science), Tmem14c can function as a molecular adaptor that facilitates the interaction of proteins involved in porphyrin transport, or as a protoporphyrinogen IX transporter (Fig. C). The identification of Tmem14c as an essential regulator of porphyrin transport and heme synthesis provides a novel genetic tool for exploring erythropoiesis and disorders of heme synthesis such as porphyria and anemia. Disclosures: No relevant conflicts of interest to declare.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-12-03
    Description: Rare endothelial cells in the aorta-gonad-mesonephros (AGM) transition into hematopoietic stem cells (HSCs) during embryonic development. Lineage tracing experiments indicate that HSCs emerge from Cadherin 5 (Cdh5, VE-cadherin)+ endothelial precursors, and isolated populations of Cdh5+ cells from mouse embryos and embryonic stem (ES) cells can be differentiated into hematopoietic cells. Cdh5 has also been widely implicated as a marker of AGM-derived hemogenic endothelial cells. Since Cdh5-/- mice embryos die before the first HSCs emerge, it is unknown if Cdh5 has a direct role in HSC emergence. Our previous genetic screen yielded malbec (mlbbw306), a zebrafish mutant for cdh5, with normal embryonic and definitive blood. Utilizing time-lapse imaging, parabiotic surgical pairing of zebrafish embryos, and blastula transplantation assays, we show that HSCs emerge, migrate, engraft, and differentiate in the absence of cdh5 expression. By tracing Cdh5-/- GFP+/+ cells inchimeric mice, we demonstrated that Cdh5-/- GFP+/+ HSCs emerging from E10.5 and E11.5 AGM or derived from E13.5 fetal liver not only differentiate into hematopoietic colonies but also engraft and reconstitute multi-lineage adult blood. These data establish that Cdh5, a marker of hemogenic endothelium in the AGM, is dispensable for the transition of hemogenic endothelium to HSCs. Disclosures Bauer: Biogen: Research Funding; Editas Medicine: Consultancy. Zon:FATE Therapeutics: Employment, Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Other: Founder; Scholar Rock: Employment, Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Other: Founder. Orkin:Editas Medicine: Membership on an entity's Board of Directors or advisory committees; Biogen: Research Funding; Pfizer: Research Funding; Sangamo Biosciences: Consultancy.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-11-16
    Description: Abstract 79 Megaloblastic anemias are characterized by impaired DNA metabolism, often due to deficiencies in vitamin B12 or folate. Genes underlying hereditary forms of megaloblastic anemia not caused by vitamin B12 or folate deficiencies, however, remain largely unknown. Here we characterize a genetic deficiency in a patient with infantile-onset megaloblastic anemia, developmental delays, and a mitochondrial disorder of unknown etiology. Analysis of peripheral blood smears from the patient revealed hypersegmented neutrophils and erythroid macrocytes, classic features of megaloblastic anemias. The patient's vitamin B12 and folate levels are normal, eliminating their deficiency as potential causes of the disease. Whole-exome sequencing of the proband cDNA identified a homozygous, single nucleotide deletion (c.231delC) in Sideroflexin-4 (SFXN4), a predicted mitochondrial multi-spanning transmembrane protein. We experimentally verified the mitochondrial localization of SFXN4 using a combination of western analyses on mitochondrial lysates and confocal fluorescence immunohistochemistry. Using trypsin-sensitivity assays on isolated mitoplasts, we further determined the submitochondrial localization of SFXN4 to the inner mitochondrial membrane. Bioinformatic analyses predict that the mutation introduces a frame shift and a premature stop codon (p.Pro78Leufs*25), resulting in a severely truncated polypeptide. To determine whether the mutant mRNA were expressed in vivo, we used qRT-PCR to assess the steady state level of SFXN4 mRNA in cultured fibroblasts from the proband. qRT-PCR revealed a 92% reduction in SFXN4 expression, consistent with nonsense-mediated decay of the mutant transcript. Genotyping of the index patient and 3 generations of her nuclear family using both Sanger sequencing and allele-specific oligonucleotide hybridization showed that the mutant allele is inherited in an autosomal recessive manner (Fig. A), the result of a presumed founder effect. We used complementary zebrafish and human fibroblast systems to model the megaloblastic anemia and mitochondrial disease in the patient, respectively. Using splice-blocking antisense morpholino oligomers (MO) targeting sfxn4, we induced a loss-of-function phenotype in zebrafish embryos (hereafter, referred to as “morphants”). qRT-PCR confirmed the efficient knockdown of sfxn4, as morphants have
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2010-11-19
    Description: Abstract 163 Iron plays a key role as a cofactor in many fundamental metabolic processes, which require heme synthesis and Fe/S cluster assembly in the mitochondria. Defects in the transport of iron into the mitochondria would lead to anemias due to a deficiency in heme and hemoglobin synthesis. Here we describe a zebrafish genetic mutant, pinotage (pnttq209), which exhibits a profound hypochromic, microcytic anemia. Erythrocytes from pnt mutants have a defect in hemoglobinization and decreased red cell indices (mean corpuscular volume and hemoglobin content, hematocrit, hemoglobin concentration). Through positional cloning, we showed that the mitochondrial ATPase Inhibitory Factor 1 (atpif1), which regulates the inner mitochondrial membrane potential, is the gene disrupted in pnt. The identity of the pnt gene was verified by: (a) decreased atpif1 steady-state mRNA in pnt mutants, (b) phenocopying the anemia with anti-sense atpif1 morpholinos, (c) functional complementation of the anemia with atpif1 cRNA, and (d) a genetic polymorphism in the 3'UTR co-segregating with the mutant phenotype that destabilizes the atpif1 mRNA. Consistent with the conserved function of atpif1 in higher vertebrates, the silencing of the murine ortholog of atpif1 in Friend mouse erythroleukemia (MEL) cells showed a defect in hemoglobinization by o-dianisidine staining and reduction of 59Fe incorporation into heme in 59Fe-metabolically labeled cells. Moreover, Atpif1 knockdown destabilizes their mitochondrial membrane potential and volume. Therefore, the identification of atpif1 in pnt functionally demonstrates the role of atpif1 in regulating the proton motive gradient across the inner mitochondrial membrane for mitochondrial iron incorporation in heme biosynthesis. These results uncover a novel hematopoiesis-related function of atpif1, which will directly contribute to our understanding and potential treatment of human congenital and acquired anemias. Disclosures: No relevant conflicts of interest to declare.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-11-29
    Description: The birth and development of hematopoietic stem cells (HSCs) remain a mystery. During fetal development, a subset of endothelial cells transitions to become HSCs in the aorta-gonad-mesonephros (AGM) region. Blood flow-mediated shear stress and activation of nitric oxide synthase (NOS) were demonstrated to stimulate the endothelial-to-HSC transition in the AGM. However, we showed that malbec (mlbbw306), a zebrafish mutant for cadherin 5, produces HSCs despite circulation arrest and the inhibition of NOS, suggesting that other biomechanical forces, mechanosensation pathways, or epigenetic mechanisms might regulate HSC formation and could have utility in developing HSCs. Using zebrafish, murine, and human models, we show that Piezo1-sensitive biomechanical stretching of hemogenic endothelial cells enhances Dnmt3b expression for long-term (LT)-HSC formation. Our microangiography and time-lapse confocal imaging established that cdh5-MO embryos have a heartbeat and pulsation in blood vessels despite the absence of blood flow. We also employed light sheet and time-lapse confocal microscopy followed by Fourier transform analyses to establish that although pulsation is independent of blood flow in the AGM, it is concurrent with the endothelial-to-hematopoietic transition. To establish the functional link between pulsation and HSC formation, we developed a bioreactor simulating the pulsating blood vessel conditions. We found that the biomechanical stretching of hemogenic endothelial cells or the pharmacological activation of Piezo1 yields three times higher amounts of LT-HSC formation; which reconstitute to normal multi-lineage adult blood even upon serial transplantation. Our gene-silencing, time-lapse imaging, explant culture, and computational analyses further demonstrated that biomechanical stretching activates Piezo1; which enhances epigenetic regulator Dnmt3b expression to stimulate the endothelial-to-HSC transition. Our results demonstrate how pulsation-mediated biomechanical forces stimulate cell-fate transitions and stem cell formation by activating mechanosensitive channels as well as epigenetic machinery. We present a model that addresses major challenges in HSC transplantation and cellular therapies for treating blood and bone marrow diseases. In addition, we report a scalable bioreactor with potential widespread use and a pharmacological target to develop and expand LT-HSCs. Disclosures No relevant conflicts of interest to declare.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-11-13
    Description: The temporal and spatial origin and development of long-term, self-renewing hematopoietic stem cells (LT-HSC) remain a mystery. The first set of definitive HSCs is born from the hemogenic endothelial cells residing in the ventral wall of the dorsal aorta (DA) of the aorta-gonad-mesonephros region during embryonic development. Blood flow- and shear-stress-mediated nitric oxide-induced vasodilation are responsible for the endothelial-to-HSC transition (EHT). However, it remains unknown why the ventral wall, and not the dorsal wall, of the DA is the restricted site of the EHT when blood flows through the entire DA and exerts shear stress on both the ventral and dorsal sides of the DA. Using single-particle tracking and fast Fourier Transform analyses of pulsating blood vessels, we demonstrate that the circumferential strain in the ventral wall, and not dorsal wall, is concurrent with and responsible for the magnitude, the site, and timing of the HSC formation. We extended our findings by developing a bioreactor to establish the functional link between pulsation in the blood vessels and HSC formation. Using serial transplant, limiting dilution, and serial replating assays, we found that pulsation mediated circumferential stretching of hemogenic endothelial cells or Piezo1 activation (Yoda1) yields 3-times higher amounts of Long Term (LT)-HSC formation; which reconstitute to normal multi-lineage adult blood. Using delayed-type hypersensitivity assay, adult globin expression, MPO enzyme activity, immunoglobulins, and T-cell receptor rearrangement analyses, we found that circumferential stretching or Piezo1 activation-derived HSCs reconstitute to functional T and B cells, adult erythrocytes, and myeloid cells. Our Piezo1fl/flxScl-Cre conditional knockout, gene-silencing, & confocal imaging further demonstrate that circumferential stretching of blood vessels activates Piezo1; which enhances epigenetic regulator Dnmt3b expression to stimulate the EHT. Our CUT&RUN CHIP-Sequencing & MASSArray methylation analyses demonstrate that Dnmt3b suppresses endothelial genes during EHT. To analyze the conserved role of PIEZO1-mediated mechanosensitive mechanisms in human hematopoiesis, we employed directed differentiation of constitutive RUNX1-mCherry human induced pluripotent stem cells (iPSCs) to hemogenic endothelial cells. We found that Yoda1-mediated PIEZO1 activation stimulated human endothelial-to-hematopoietic transition. In conclusion, pulsation-mediated circumferential strain activates Piezo1 to stimulate the endothelial-to-HSC transition via the induction of Dnmt3b expression. This leads to the formation of long-term self-renewing HSCs, which can engraft and reconstitute to multi-lineage, adult blood upon serial transplantations. Our identification of a novel biomechanical cue unravels the physiological mystery in HSC formation in the ventral wall of the DA. We also establish its cross-talk with mechanosensitive and epigenetic mechanisms to produce functional, long-term HSCs that reconstitute to form normal adult blood. This yields the therapeutic promise of developing transgene-free LT-HSC-based cellular therapies for the treatment of human blood disorders. Disclosures No relevant conflicts of interest to declare.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-11-18
    Description: Abstract 343 Iron and protoporphyrin IX (PPIX) are key substrates used by ferrochelatase (Fech) to produce heme, which subsequently binds to globin to generate hemoglobin in red blood cells. Defects in the transport of iron, synthesis of PPIX, or catalytic activity of Fech impair heme synthesis, and thus cause human congenital anemias. However, the precise mechanisms regulating transporters and enzymes facilitating heme synthesis and their inter-dependent actions remain largely unknown. The zebrafish mutant pinotage (pnttq209) exhibits profound hypochromic, microcytic anemia. Erythrocytes from viable adult pnt fish have reduced hemoglobin content and cell volume. Positional cloning, morpholino-induced loss-of-function, cRNA over-expression, quantitative RT-PCR, and mutational analysis show that mitochondrial ATPase inhibitory factor1 (Atpif1) is the gene disrupted in pnt. Previous studies have demonstrated the role of Atpif1 in the regulation of mitochondrial proton motive force, pH, and ATP synthesis. Here, we report direct evidence that Atpif1 regulates mitochondrial heme synthesis. Knock down of the human and murine orthologs of Atpif1 using shRNAs in mammalian erythroid tissues, human CD34+, mouse Friend erythroleukemia (MEL) and primary fetal liver cells, impairs hemoglobinization. Atpif1 protein levels are reduced in stable MEL cells silenced for Atpif1; however, the protein levels of other mitochondrial structural proteins, β-subunit of ATP synthase (AtpB), voltage-dependent anionic-selective channel protein 1 (Vdac1), complex IV (CoxIV), and heat shock protein 60 (Hsp60), are normal, indicating an intact mitochondrial structure in Atpif1 silenced cells. Moreover, Atpif1 silenced cells have an increased mitochondrial membrane potential, an elevation in mitochondrial pH, and depleted ATP levels. Differentiating MEL cells silenced for Atpif1 display reduced incorporation of 59Fe into heme, although their mitochondria have sufficient amounts of Fech substrates, iron and PPIX. This is due to diminished in vivo Fech activity, despite having normal levels of Fech protein in Atpif1 silenced cells. We further establish that the Fech activity is reduced at pH 8.5, corresponding to the more alkaline mitochondrial pH in Atpif1-silenced cells. The over-expression of either yeast Fech or zebrafish Fech in pnt embryos shows that only yeast Fech rescues the anemia in pnt. This demonstrates that the catalytic activity of [Fe-S] bound zebrafish Fech, and not yeast Fech, which lacks the [Fe-S] cluster, is vulnerable to the elevation in mitochondrial pH due to the loss of Atpif1. Therefore, the loss of Atpif1 reduces the catalytic ability of vertebrate Fech to incorporate iron into PPIX to make heme, resulting in hypochromic anemia. The newly uncovered role of Atpif1 to regulate Fech provides a new insight on the mitochondrial regulation of heme synthesis and a potential cause of sideroblastic anemias. Mechanistic model of Atpif1 function in heme synthesis. The mitochondrial Atpif1 normally preserves mitochondrial pH. Loss of Atpif1 alkalinizes mitochondrial pH, the [Fe-S] cluster binding makes Fech sensitive to mitochondrial pH changes, and consequently reduces its catalytic efficiency for the production of heme. Disclosures: No relevant conflicts of interest to declare.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...