ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Call number: AWI G6-97-0142
    In: Mitteilungen
    Type of Medium: Monograph available for loan
    Pages: IX, 203 S. : 92 figs., 45 tables ; 26 cm
    ISBN: 3510520254
    ISSN: 0538-4680
    Series Statement: Mitteilungen / Internationale Vereinigung für Theoretische und Angewandte Limnologie 25
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
  • 3
    ISSN: 1520-6882
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Freshwater biology 49 (2004), S. 0 
    ISSN: 1365-2427
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: 1. Denitrification, net oxygen consumption and net nitrous oxide flux to the atmosphere were measured in three small rivers (discharge approximately 2–27 m3 s−1) at the whole reach scale during Spring and Summer, 2002. Two of these rivers (Iroquois River and Sugar Creek in north-west Indiana – north-east Illinois, U.S.A.) drained agricultural catchments and the other (Millstone River in central New Jersey, U.S.A.) drained a mixed suburban–agricultural catchment.2. Denitrification, oxygen consumption and N2O flux were measured based on net changes in dissolved gas concentrations (N2, O2, and N2O) during riverine transport, correcting for atmospheric exchange. On each date, measurements were made during both light and dark periods.3. Denitrification rates in these rivers ranged from 0.31 to 15.91 mmol N m−2 h−1, and rates within each river reach were consistently higher during the day than during the night. This diurnal pattern could be related to cyclic patterns of nitrification driven by diurnal variations in water column pH and temperature.4. Oxygen consumption ranged from 2.56 to 241 mmol O2 m−2 h−1. In contrast to denitrification, net oxygen consumption was generally higher during the night than during the day.5. River water was consistently supersaturated with N2O, ranging from 102 to 209% saturated. Net flux of N2O to the atmosphere ranged from 0.4 to 60 μmol N m−2 h−1. Net flux of N2O was generally higher at night than during the day. The high flux of N2O from these rivers strengthens the argument that rivers are an important contributor to anthropogenic emissions of this greenhouse gas.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Nutrient cycling in agroecosystems 52 (1998), S. 195-212 
    ISSN: 1573-0867
    Keywords: aquatic emissions ; N2O ; nitrogen transport ; watersheds ; nitrous oxide
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The purpose of the current paper is to estimate future trends (up to the year 2050) in the global geographical distribution of nitrous oxide (N2O) emissions in rivers, estuaries, and continental shelf regions due to biological processes, particularly as they are affected by anthropogenic nitrogen (N) inputs, and to compare these to 1990 emissions. The methodology used is from Seitzinger and Kroeze (1998) who estimated 1990 emissions assuming that N2O production in these systems is related to nitrification and denitrification. Nitrification and denitrification in rivers and estuaries were related to external inputs of nitrogen to those systems. The model results indicate that between 1990 and 2050 the dissolved inorganic nitrogen (DIN) export by rivers more than doubles to 47.2 Tg N in 2050. This increase results from a growing world population, associated with increases in fertilizer use and atmospheric deposition of nitrogen oxides (NOy). By 2050, 90% of river DIN export can be considered anthropogenic. N2O emissions from rivers, estuaries and continental shelves are calculated to amount to 4.9 (1.3 – 13.0) Tg N in 2050, of which two-thirds are from rivers. Aquatic emissions of N2O are calculated to increase faster than DIN export rates: between 1990 and 2050, estuarine and river emissions increase by a factor of 3 and 4, respectively. Emissions from continental shelves, on the other hand, are calculated to increase by only 12.5%.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Biogeochemistry 25 (1994), S. 19-39 
    ISSN: 1573-515X
    Keywords: denitrification ; mineralization ; nitrification ; nitrogen ; riparian ; stream ; wetland ; New Jersey ; Pennsylvania ; Pinelands
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Denitrification (N2 production) and oxygen consumption rates were measured at ambient field nitrate concentrations during summer in sediments from eight wetlands (mixed hardwood swamps, cedar swamps, heath dominated shrub wetland, herbaceous peatland, and a wetland lacking live vegetation) and two streams. The study sites included wetlands in undisturbed watersheds and in watersheds with considerable agricultural and/or sewage treatment effluent input. Denitrification rates measured in intact cores of water-saturated sediment ranged from ≤ 20 to 260 μmol N m-2 h-1 among the three undisturbed wetlands and were less variable (180 to 260 μmol N M-2 h-1) among the four disturbed wetlands. Denitrification rates increased when nitrate concentrations in the overlying water were increased experimentally (1 up to 770 μM), indicating that nitrate was an important factor controlling denitrification rates. However, rates of nitrate uptake from the overlying water were not a good predictor of denitrification rates because nitrification in the sediments also supplied nitrate for denitrification. Regardless of the dominant vegetation, pH, or degree of disturbance, denitrification rates were best correlated with sediment oxygen consumption rates (r 2 = 0.912) indicating a relationship between denitrification and organic matter mineralization and/or sediment nitrification rates. Rates of denitrification in the wetland sediments were similar to those in adjacent stream sediments. Rates of denitrification in these wetlands were within the range of rates previously reported for water-saturated wetland sediments and flooded soils using whole core15N techniques that quantify coupled nitrification/denitrification, and were higher than rates reported from aerobic (non-saturated) wetland sediments using acetylene block methods.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1573-515X
    Keywords: acetylene block ; aquatic sediments ; denitrification ; N cycling ; 15N ; N2-flux
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Measurements of denitrification using the acetylene inhibition,15N isotope tracer, and N2 flux methods were carried out concurrently using sediment cores from Vilhelmsborg sø, Denmark, in an attempt to clarify some of the limitations of each technique. Three experimental treatments of overlying water were used: control, nitrate enriched, and ammonia enriched water. The N2 flux and15N tracer experiments showed high rates of coupled nitrification/denitrification in the sediments. The acetylene inhibition method did not capture any coupled nitrification/denitrification. This could be explained by acetylene inhibition of nitrification. A combined15N tracer/acetylene inhibition experiment demonstrated that acetylene inhibition of N2O reduction was incomplete and the method, therefore, only measured approximately 50% of the denitrification due to nitrate from the overlying water. Similar rates of denitrification due to nitrate in the overlying water were measured by the N2 flux method and the acetylene inhibition method, after correcting for the 50% efficiency of acetylene inhibition. Rates of denitrification due to nitrate from the overlying water measured by the15N tracer method, however, were only approximately 35% or less of those measured by the acetylene inhibition or N2 flux methods.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Biogeochemistry 35 (1996), S. 227-233 
    ISSN: 1573-515X
    Keywords: area ; continental shelves ; North Atlantic ; shallow water
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract We report here estimates of the areas of water that are between 1 and 100 m and between 1 and 200 m deep in the North Atlantic, including the Caribbean Sea, the Gulf of Mexico, Hudson Bay and the North Sea, but excluding estuaries. The total areas within these depths, from the equator to 70° N, are 3.91 × 106 km2 and 5.66 × 106 km2, respectively. We also report the respective areas by selected geographic regions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Biogeochemistry 35 (1996), S. 235-260 
    ISSN: 1573-515X
    Keywords: benthic mineralization ; continental shelf ; denitrification ; global N cycle ; nitrogen ; North Atlantic ; nutrients ; onwelling ; phytoplankton ; sediments
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract A model of coupled nitrification/denitrification was developed for continental shelf sediments to estimate the spatial distribution of denitrification throughout shelf regions in the North Atlantic basin. Using data from a wide range of continental shelf regions, we found a linear relationship between denitrification and sediment oxygen uptake. This relationship was applied to specific continental shelf regions by combining it with a second regression relating sediment oxygen uptake to primary production in the overlying water. The combined equation was: denitrification (mmol N m−2 d−1)=0.019* phytoplankton production (mmol C m−2 d−1). This relationship suggests that approximately 13% of the N incorporated into phytoplankton in shelf waters is eventually denitrified in the sediments via coupled nitrification/denitrification, assuming a C:N ratio of 6.625:1 for phytoplankton. The model calculated denitrification rates compare favorably with rates reported for several shelf regions in the North Atlantic. The model-predicted average denitrification rate for continental shelf sediments in the North Atlantic Basin is 0.69 mmol N m− 2 d−1. Denitrification rates (per unit area) predicted by the model are highest for the continental shelf region in the western North Atlantic between Cape Hatteras and South Florida and lowest for Hudson Bay, the Baffin Island region, and Greenland. Within latitudinal belts, average denitrification rates were lowest in the high latitudes, intermediate in the tropics and highest in the mid-latitudes. Although denitrification rates per unit area are lowest in the high latitudes, the total N removal by denitrification (53 × 1010 mol N y−1) is similar to that in the mid-latitudes (60 × 1010 mol N y−1) due to the large area of continental shelf in the high latitudes. The Gulf of St. Lawrence/Grand Banks area and the North Sea are responsible for seventy-five percent of the denitrification in the high latitude region. N removal by denitrification in the western North Atlantic (96 × 1010 mol N y−1) is two times greater than in the eastern North Atlantic (47 × 1010 mol N y−1). This is primarily due to differences in the area of continental shelf in the two regions, as the average denitrification rate per unit area is similar in the western and eastern North Atlantic. We calculate that a total of 143 × 1010 mol N y−1 is removed via coupled nitrification/denitrification on the North Atlantic continental shelf. This estimate is expected to underestimate total sediment denitrification because it does not include direct denitrification of nitrate from the overlying water. The rate of coupled nitrification/denitrification calculated is greater than the nitrogen inputs from atmospheric deposition and river sources combined, and suggests that onwelling of nutrient rich slope water is a major source of N for denitrification in shelf regions. For the two regions where N inputs to a shelf region from onwelling have been measured, onwelling appears to be able to balance the denitrification loss.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2009-09-15
    Print ISSN: 0013-936X
    Electronic ISSN: 1520-5851
    Topics: Chemistry and Pharmacology , Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...