ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-06-25
    Description: When a major earthquake strikes, the resulting devastation can be compounded or even exceeded by the subsequent cascade of triggered seismicity. As the Nepalese recover from the 25 April 2015 shock, knowledge of what comes next is essential. We calculate the redistribution of crustal stresses and implied earthquake probabilities for different periods, from daily to 30 years into the future. An initial forecast was completed before an M  7.3 earthquake struck on 12 May 2015 that enables a preliminary assessment; postforecast seismicity has so far occurred within a zone of fivefold probability gain. Evaluation of the forecast performance, using two months of seismic data, reveals that stress-based approaches present improved skill in higher-magnitude triggered seismicity. Our results suggest that considering the total stress field, rather than only the coseismic one, improves the spatial performance of the model based on the estimation of a wide range of potential triggered faults following a mainshock.
    Print ISSN: 0895-0695
    Electronic ISSN: 1938-2057
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019
    Description: Abstract The 2016–2017 Central Apennines earthquake sequence is a recent example of how damages from subsequent aftershocks can exceed those caused by the initial mainshock. Recent studies reveal that physics‐based aftershock forecasts present comparable skills to their statistical counterparts, but their performance remains a controversial subject. Here we employ physics‐based models that combine the elasto‐static stress transfer with rate‐and‐state friction laws, and short‐term statistical Epidemic Type Aftershock Sequence (ETAS) models to describe the spatiotemporal evolution of the earthquake cascade. We then track the absolute and relative model performance using log‐likelihood statistics for a 1‐year horizon after the 24 August 2016 Mw = 6.0 Amatrice earthquake. We perform a series of pseudoprospective experiments by producing seven classes of Coulomb rate‐state (CRS) forecasts with gradual increase in data input quality and model complexity. Our goal is to investigate the influence of data quality on the predictive power of physics‐based models and to assess the comparative performance of the forecasts in critical time windows, such as the period following the 26 October Visso earthquakes leading to the 30 October Mw = 6.5 Norcia mainshock. We find that (1) the spatiotemporal performance of the basic CRS models is poor and progressively improves as more refined data are used, (2) CRS forecasts are about as informative as ETAS when secondary triggering effects from M3+ earthquakes are included together with spatially variable slip models, spatially heterogeneous receiver faults, and optimized rate‐and‐state parameters. After the Visso earthquakes, the more elaborate CRS model outperforms ETAS highlighting the importance of the static stress transfer for operational earthquake forecasting.
    Print ISSN: 2169-9313
    Electronic ISSN: 2169-9356
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-12-02
    Description: I perform a retrospective forecast experiment in the most rapid extensive continental rift worldwide, the western Corinth Gulf (wCG, Greece), aiming to predict shallow seismicity (depth 〈15 km) with magnitude M ≥ 3.0 for the time period between 1995 and 2013. I compare two short-term earthquake clustering models, based on epidemic-type aftershock sequence (ETAS) statistics, four physics-based (CRS) models, combining static stress change estimations and the rate-and-state laboratory law and one hybrid model. For the latter models, I incorporate the stress changes imparted from 31 earthquakes with magnitude M ≥ 4.5 at the extended area of wCG. Special attention is given on the 3-D representation of active faults, acting as potential receiver planes for the estimation of static stress changes. I use reference seismicity between 1990 and 1995, corresponding to the learning phase of physics-based models, and I evaluate the forecasts for six months following the 1995 M = 6.4 Aigio earthquake using log-likelihood performance metrics. For the ETAS realizations, I use seismic events with magnitude M ≥ 2.5 within daily update intervals to enhance their predictive power. For assessing the role of background seismicity, I implement a stochastic reconstruction (aka declustering) aiming to answer whether M 〉 4.5 earthquakes correspond to spontaneous events and identify, if possible, different triggering characteristics between aftershock sequences and swarm-type seismicity periods. I find that: (1) ETAS models outperform CRS models in most time intervals achieving very low rejection ratio R N = 6 per cent, when I test their efficiency to forecast the total number of events inside the study area, (2) the best rejection ratio for CRS models reaches R N = 17 per cent, when I use varying target depths and receiver plane geometry, (3) 75 per cent of the 1995 Aigio aftershocks that occurred within the first month can be explained by static stress changes, (4) highly variable performance on behalf of both statistical and physical models is suggested by large confidence intervals of information gain per earthquake and (5) generic ETAS models can adequately predict the temporal evolution of seismicity during swarms. Furthermore, stochastic reconstruction of seismicity makes possible the identification of different triggering processes between specific seismic crises (2001, 2003–04, 2006–07) and the 1995 aftershock sequence. I find that: (1) seismic events with M ≥ 5.0 are not a part of a preceding earthquake cascade, since they are characterized by high probability being a background event (average P back 〉 0.8) and (2) triggered seismicity within swarms is characterized by lower event productivity when compared with the corresponding value during aftershock sequences. I conclude that physics-based models contribute on the determination of the ‘new-normal’ seismicity rate at longer time intervals and that their joint implementation with statistical models is beneficial for future operational forecast systems.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-08-08
    Description: We investigate the interaction between transform faults and normal faults in western Greece based on seismological analysis and static stress transfer calculations associated with the 8 June 2008 M w  6.4 Achaia earthquake. We present a relocated earthquake catalog for the period between June 2008 and January 2010, when two normal-faulting events on 18 ( M w  5.3) and 22 ( M w  5.2) January 2010 occurred at Efpalio (western Corinth gulf). They were located approximately 70 km northeast from the buried right-lateral fault, identified as the causative structure of the Achaia earthquake. The first Efpalio event ruptured a mapped normal fault that trends east-northeast–west-southwest, dipping 55°–60° to the south. We estimate ~2-fold seismicity rate changes in the western Corinth gulf region for the interseismic period (June 2008–January 2010), and we find that inside this interval, the monthly event rate remained increased at a 2 significance level. We calculate a Coulomb stress increase (0.1–0.6 bar) in the Efpalio region using optimally oriented for failure planes, and an ~0.11 bar Coulomb stress increase at the hypocenters of the January 2010 events when incorporating geologically defined receiver planes. We conclude that the positive static stress changes following the Achaia event promoted the observed spatiotemporal clustering in the Corinth gulf for this specific period. We identify fault unclamping due to normal stress reduction as the physical mechanism in this case. The high seismic-hazard character of the target region ( ) in the National Building Code emphasizes the importance of time-dependent earthquake probabilities and stress-mediated fault interaction studies. Online Material: Tables of relocated seismicity and station corrections.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-01-03
    Print ISSN: 0895-0695
    Electronic ISSN: 1938-2057
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-05-20
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-07-29
    Description: The 2016–2017 Central Italy seismic sequence ruptured overlapping normal faults of the Apennines mountain chain, in nine earthquakes with magnitude Mw 〉 5 within a few months. Here we investigate the structure of the fault system using an extensive aftershock data set, from joint permanent and temporary seismic networks, and 3-D Vp and Vp/Vs velocity models. We show that mainshocks nucleated on gently west dipping planes that we interpret as inverted steep ramps inherited from the late Pliocene compression. The two large shocks, the 24 August, Mw = 6.0 Amatrice and the 30 October, Mw = 6.5 Norcia occurred on distinct faults reactivated by high pore pressure at the footwall, as indicated by positive Vp/Vs anomalies. The lateral extent of the overpressurized volume includes the fault patch of the Norcia earthquake. The irregular geometry of normal faults together with the reactivated ramps leads to the kinematic complexity observed during the coseismic ruptures and the spatial distribution of aftershocks. ©2018. American Geophysical Union. All Rights Reserved.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-06-01
    Description: Earthquakes occur as the result of long-term strain accumulation on active faults and complex transient triggering mechanisms. Although laboratory experiments show accelerating deformation patterns before failure conditions are met, imaging similar preparatory phases in nature remains difficult because it requires dense monitoring in advance. The 2016 Amatrice-Visso-Norcia (central Italy) earthquake cascade, captured by an unprecedented seismic network, provided a unique testing ground to image the preparatory phase of a large event. The crustal volume of the Norcia incipient fault was densely illuminated by seismic rays from more than 13,000 earthquakes that occurred within the 3 mo before the main shock nucleation. We performed seismic tomography in distinct time windows that revealed the precursory changes of elastic wave speed, signaling (1) the final locked state of the fault, and (2) the rapid fault-stiffness alterations near the hypocenter just a few weeks before the event. The results are the first instance where short-lived, hard-to-catch crustal properties shed light on evolving earthquake cascades.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-11-01
    Print ISSN: 0895-0695
    Electronic ISSN: 1938-2057
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-01-01
    Print ISSN: 0895-0695
    Electronic ISSN: 1938-2057
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...