ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
  • 2
  • 3
    Publication Date: 2021-05-12
    Description: Lava flows produced during Etna flank eruptions represent severe hazards for the nearby inhabited areas, which can be protected by adopting prompt mitigation actions, such as the building of diversion barriers. Lava diversion measures were attempted recently during the 1983, 1991-93, 2001 and 2002 Etna eruptions, although with different degrees of success. In addition to the complexity of barrier construction (due to the adverse physical conditions), the time available to successfully slow the advance of a lava flow depends on the lava effusion rate, which is not easily measurable. One method to estimate the average lava effusion rate over a specified period of time is based on a volumetric approach; i.e. the measurement of the volume changes of the lava flow over that period. Here, this has been compared to an approach based on thermal image processing, as applied to estimate the average effusion rates of lava flows during the 1981 and 2001 Etna eruptions. The final volumes were measured by the comparison of pre-eruption and post-eruption photogrammetric digital elevation models and orthophotographs. Lava volume growth during these eruptions was estimated by locating the flow-front positions from analyses of scientific papers and newspapers reports, as well as from helicopter photographs. The analyses of these two eruptions contribute to the understanding of the different eruptive mechanisms, highlighting the role of the peak effusion rate, which represents a critical parameter for planning of mitigation actions and for hazard evaluation.
    Description: Published
    Description: 492-498
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: open
    Keywords: etna flank eruptions ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: This work is aimed at improving the performance of the ground NEtwork of Thermal and VIsible and cameras located on Mt. Etna volcano (Etna_NETVIS) by optimizing its observational capability on lava flows evolution and by developing dedicated tools for systematically measuring quantitative parameters of known accuracy. The first goal will be achieved through the analysis of the geometrical configuration and its improvement by means of the establishment of additional observation sites to be equipped with mobile stations, depending on the area of interest. This will increment the spatial coverage and improve the observation of the most active areas for surface sin-eruptive processes. For the second objective we will implement new processing tools to permit a reliable quantitative use of the data collected by the surveillance sensors of NETVIS, extending their capability in monitor the lava flow thermal and spatial evolution and by providing georeferenced data for rapid mapping scope. The tool will be used to automatically pre-process multitemporal datasets and will be tested on both simulated and real scenarios. Thanks to data collected and archive by the NETVIS INGV team, we will have the opportunity to develop and test the procedure in different operational conditions selected among the large number of lava flows coupled to lava fountan events occurred between 2011 and 2013. Additionally, Etna_NETVIS data can be used to downscale the information derived from satellite data and/or to integrate the satellite datasets in case of incomplete coverage or missing acquisitions (both due to low revisiting time or bad geometrical conditions). Therefore an additional goal is that of comparing/integrating quantitative data derived from visible and radar satellite sensors with the maps obtained using Etna_NETVIS. The procedure will take into account the discrepancy among the different datasets in terms of accuracy and resolution and will attempt to provide a combined approach (based on error analysis and data weighting) to evaluate the final results reliability. Preliminary results on the procedure and algorithm adopted for geometric and radiometric sensor calibration, definition of optimized configurations through simulation and for extracting updated mapping data from multi-temporal dataset will be presented. This work is developed in the framework of the EU-FP7 project “MED-SUV” (MEDiterranean SUpersite Volcanoes).
    Description: Published
    Description: Vienna, Austria
    Description: 5V. Sorveglianza vulcanica ed emergenze
    Description: open
    Keywords: Lava Flow and mapping ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Abstract
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: Mount Etna despite being an extremely active volcano which, during the last 400 years, has produced many lava flow flank eruptions has rarely threatened or damaged populated areas. The reconstruction of the temporal evolution of potentially hazardous flank eruptions represents a useful contribution to reducing the impact of future eruptions by and analyzing actions to be taken for protecting sensitive areas. In this work, we quantitatively reconstructed the evolution of the 1981 lava flow field of Mt Etna, which threatened the town of Randazzo. This reconstruction was used to evaluate the cumulated volume, the time averaged discharge rate trend and to estimate its maximum value. The analysis was conducted by comparing pre‐ and post‐eruption topographic surfaces, extracted by processing historical photogrammetric data sets and by utilizing the eruption chronology to establish the lava flow front positions at different times. An unusually high discharge rate (for Etna) of 640 m3/s was obtained, which corresponds well with the very fast advance rate observed for the main lava flow. A comparison with other volcanoes, presenting high discharge rate, was proposed for finding a clue to unveil the 1981 Etna eruptive mechanism. A model was presented to explain the high discharge rate, which includes an additional contribution to the lava discharge caused by the interception of a shallow magma reservoir by a dike rising from depth and the subsequent emptying of the reservoir.
    Description: Published
    Description: Q01004
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: JCR Journal
    Description: restricted
    Keywords: Etna ; discharge rate ; lava flow eruption ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: Lava flow spreading along the flanks of Etna volcano often produces damages to the land and proprieties. The impact of these eruptions could be mitigated by building artificial barriers for controlling and slowing down the lava, as recently experienced in 1983, 1991–1993, 2001 and 2002. This study investigates how numerical simulations can be adopted for evaluating the effectiveness of barrier construction and for optimizing their geometry, considering as test case the lava flows emplaced on Etna's south flank during 2001. The flow temporal evolutions were reconstructed deriving the effusion rate trends, together with the pre-eruption topography were adopted as input data of the MAGFLOW simulation code. Three simulations were then conducted to simulate lava flow with and without barriers. The first aimed at verifying the reconstruction of the effusion rate trends, while the others at assessing the performance of the barrier system realized during the eruption in comparison with an alternative solution here proposed. A quantitative analysis carried out on the first simulation confirms the suitability of the selected test case. The comparison of the three simulated thickness distributions showed both the effectiveness of the barriers in slowing down the lava flow and the sensitivity of the MAGFLOW code to the topographical variations represented by the barriers. Finally, for reducing both the time necessary to erect the barrier and the barrier environmental impact, the gabion's barrier construction was analyzed. The implemented and tested procedure enforces the capability of using numerical simulations for designing optimized lava flow barriers aimed at making swifter mitigatory actions upon lava flows and improving the effectiveness of civil protection interventions during emergencies.
    Description: Published
    Description: 16-26
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: lava flow ; mitigation action ; volcanic hazard ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: In order to improve the observation capability in one of the most active volcanic areas in the world, Mt. Etna, we developed a processing method to use the surveillance cameras for a quasi real-time mapping of syn-eruptive processes. Following an evaluation of the current performance of the Etna permanent ground NEtwork of Thermal and Visible Sensors (Etna_NETVIS), its possible implementation and optimization was investigated to determine the locations of additional observation sites to be rapidly set up during emergencies. A tool was then devised to process time series of ground-acquired images and extract a coherent multi-temporal dataset of georeferenced map. The processed datasets can be used to extract 2D features such as evolution maps of active lava flows. The tool was validated on ad-hoc test fields and then adopted to map the evolution of two recent lava flows. The achievable accuracy (about three times the original pixel size) and the short processing time makes the tool suitable for rapidly assessing lava flow evolutions, especially in the case of recurrent eruptions, such as those of the 2011–2015 Etna activity. The tool can be used both in standard monitoring activities and during emergency phases (eventually improving the present network with additional mobile stations) when it is mandatory to carry out a quasi-real-time mapping to support civil protection actions. The developed tool could be integrated in the control room of the Osservatorio Etneo, thus enabling the Etna_NETVIS for mapping purposes and not only for video surveillance.
    Description: Published
    Description: 192
    Description: 5V. Sorveglianza vulcanica ed emergenze
    Description: JCR Journal
    Description: open
    Keywords: volcano monitoring ; lava flow mapping ; surveillance camera ; hazard assessment ; geo spatial dataset ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: In order to improve the observation capability in one of the most active volcanic areas in the world, Mt. Etna, we developed a processing method to use the surveillance cameras for a quasi real-time mapping of syn-eruptive processes. Following an evaluation of the current performance of the Etna permanent ground NEtwork of Thermal and Visible Sensors (Etna_NETVIS), its possible implementation and optimization was investigated to determine the locations of additional observation sites to be rapidly set up during emergencies. A tool was then devised to process time series of ground-acquired images and extract a coherent multi-temporal dataset of georeferenced map. The processed datasets can be used to extract 2D features such as evolution maps of active lava flows. The tool was validated on ad-hoc test fields and then adopted to map the evolution of two recent lava flows. The achievable accuracy (about three times the original pixel size) and the short processing time makes the tool suitable for rapidly assessing lava flow evolutions, especially in the case of recurrent eruptions, such as those of the 2011–2015 Etna activity. The tool can be used both in standard monitoring activities and during emergency phases (eventually improving the present network with additional mobile stations) when it is mandatory to carry out a quasi-real-time mapping to support civil protection actions. The developed tool could be integrated in the control room of the Osservatorio Etneo, thus enabling the Etna_NETVIS for mapping purposes and not only for video surveillance.
    Description: Published
    Description: Vienna, Austria
    Description: 5V. Sorveglianza vulcanica ed emergenze
    Description: open
    Keywords: volcano monitoring ; lava flow mapping ; surveillance camera ; hazard assessment ; geo spatial dataset ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Abstract
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: In active volcanic areas it is often difficult carry out direct surveys during an eruption, remote sensing techniques based on airborne/satellite platforms and ground-based sensors have remarkable monitoring potentialities in terms of safety and observation capability. In addition, the recent development of high resolution digital cameras, laser scanners and SAR instruments have improved the ability to obtain reliable measurements for modelling the evolution of effusive and explosive eruptions by following the rate of advancement of a lava flow or the dispersal of a volcanic plume. In order to collect data at an adequate level of accuracy and frequency it is not possible to exclusively rely on airborne or satellite methods and it is necessary to carry out measurements using also remote sensing instruments operating on the ground. Among the other techniques, the use of a simplified photogrammetric approach based a video-surveillance camera network represents a straightforward alternative for rapid mapping in active volcanic areas. Therefore a procedure for optimizing and extending the observational capability of the Etna NEtwork of Thermal and VIsible cameras (NETVIS) for systematically monitoring and quantifying surface sin-eruptive processes was implemented. The activity included also the extension of the permanent video-surveillance network by installing additional mobile stations. A dedicated tool for automatic processing of image datasets was developed and tested in both simulated and real scenarios to obtain a time series of digital orthophotos for tracking the evolution of a lava flow emplacement. The developed tool was tested by processing images acquired by the Etna_NETVIS sensors, in particular from Monte Cagliato thermal camera, during the 2011 paroxysmal episodes of the New South East Crater that poured lava flows in the Valle del Bove.
    Description: Published
    Description: Roma, Italia
    Description: 5V. Sorveglianza vulcanica ed emergenze
    Description: open
    Keywords: volcano monitoring ; lava flow mapping ; surveillance camera ; hazard assessment ; geo spatial dataset ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Abstract
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-11-08
    Description: The ground monitoring of an active volcanic area presents many complexities. By exploiting the remote sensing techniques, we developed an analytical methodology for observing and quantifying eruptive processes and the related phenomena (lava flows, volcanic avalanche/landslides, slope stability features). This methodology integrates HR optical images and SAR interferometry, acquired in different time frames and was tested on the case study of Mount Etna. The extraction of new cartographic products allows us to define the volcanic hazards that may impact on the surrounding populated areas and infrastructures.
    Description: Published
    Description: Firenze
    Description: 5V. Sorveglianza vulcanica ed emergenze
    Description: reserved
    Keywords: High Resolution optical satellite system ; Satellite radar interferometry ; Digital Elevation Model ; volcanic activity ; landslide ; hazard assessment ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Extended abstract
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...