ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Publication Date: 2020-09-15
    Description: Middle atmospheric ozone, water vapour and zonal and meridional wind profiles have been measured with the two ground-based microwave radiometers GROMOS-C and MIAWARA-C. The instruments have been located at the Arctic research base AWIPEV at Ny-Ålesund, Svalbard (79∘ N, 12∘ E), since September 2015. GROMOS-C measures ozone spectra in the four cardinal directions with an elevation angle of 22∘. This means that the probed air masses at an altitude of 3 hPa (37 km) have a horizontal distance of 92 km to Ny-Ålesund. We retrieve four separate ozone profiles along the lines of sight and calculate daily mean horizontal ozone gradients which allow us to investigate the small-scale spatial variability of ozone above Ny-Ålesund. We present the evolution of the ozone gradients at Ny-Ålesund during winter 2018/2019, when a major sudden stratospheric warming (SSW) took place with the central date at 2 January, and link it to the planetary wave activity. We further analyse the SSW and discuss our ozone and water vapour measurements in a global context. At 3 hPa we find a distinct seasonal variation of the ozone gradients. The strong polar vortex during October and March results in a decreasing ozone volume mixing ratio towards the pole. In November the amplitudes of the planetary waves grow until they break in the end of December and an SSW takes place. From November until February ozone increases towards higher latitudes and the magnitude of the ozone gradients is smaller than in October and March. We attribute this to the planetary wave activity of wave numbers 1 and 2 which enabled meridional transport. The MERRA-2 reanalysis and the SD-WACCM model are able to capture the small-scale ozone variability and its seasonal changes.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-03-26
    Description: We present an analysis of the diurnal ozone cycle from 1 year of continuous ozone measurements from two ground-based microwave radiometers in the Arctic. The instruments GROMOS-C and OZORAM are located at the AWIPEV research base at Ny-Ålesund, Svalbard (79° N, 12° E), and gathered a comprehensive time series of middle-atmospheric ozone profiles with a high time resolution. An intercomparison was performed with EOS MLS and ozone sonde measurements and simulations with SD-WACCM. The measured data sets were used to study the photochemically induced diurnal cycle of ozone in the stratosphere and mesosphere. Throughout the year the insolation in the Arctic changes drastically from polar night to polar day. Accordingly, the seasonal variations in the diurnal ozone cycle are large. In the stratosphere we found a diurnal cycle throughout the entire period of polar day with the largest amplitude in April. In the mesosphere a diurnal cycle was detected in spring and fall. SD-WACCM has been proven to capture the diurnal cycle well and was therefore used to analyse the chemical reaction rates of ozone production and loss at equinox and summer solstice. Furthermore GROMOS-C proved capable of measuring the tertiary ozone layer above Ny-Ålesund in winter.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-11-27
    Description: In this work the stratospheric performance of a relatively new microwave temperature radiometer (TEMPERA) has been evaluated. With this goal in mind, almost 3 years of temperature measurements (January 2014–September 2016) from the TEMPERA radiometer were intercompared with simultaneous measurements from other techniques: radiosondes, MLS satellite and Rayleigh lidar. This intercomparison campaign was carried out at the aerological station of MeteoSwiss at Payerne (Switzerland). In addition, the temperature profiles from TEMPERA were used to validate the temperature outputs from the SD-WACCM model. The results showed in general a very good agreement between TEMPERA and the different instruments and the model, with a high correlation (higher than 0.9) in the temperature evolution at different altitudes between TEMPERA and the different data sets. An annual pattern was observed in the stratospheric temperature with generally higher temperatures in summer than in winter and with a higher variability during winter. A clear change in the tendency of the temperature deviations was detected in summer 2015, which was due to the repair of an attenuator in the TEMPERA spectrometer. The mean and the standard deviations of the temperature differences between TEMPERA and the different measurements were calculated for two periods (before and after the repair) in order to quantify the accuracy and precision of this radiometer over the campaign period. The results showed absolute biases and standard deviations lower than 2 K for most of the altitudes. In addition, comparisons proved the good performance of TEMPERA in measuring the temperature in the stratosphere.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-04-06
    Description: Wind profile information throughout the entire upper stratosphere and lower mesosphere (USLM) is important for the understanding of atmospheric dynamics but became available only recently, thanks to developments in remote sensing techniques and modelling approaches. However, as wind measurements from these altitudes are rare, such products have generally not yet been validated with (other) observations. This paper presents the first long-term intercomparison of wind observations in the USLM by co-located microwave radiometer and lidar instruments at Andenes, Norway (69.3∘ N, 16.0∘ E). Good correspondence has been found at all altitudes for both horizontal wind components for nighttime as well as daylight conditions. Biases are mostly within the random errors and do not exceed 5–10 m s−1, which is less than 10 % of the typically encountered wind speeds. Moreover, comparisons of the observations with the major reanalyses and models covering this altitude range are shown, in particular with the recently released ERA5, ECMWF's first reanalysis to cover the whole USLM region. The agreement between models and observations is very good in general, but temporally limited occurrences of pronounced discrepancies (up to 40 m s−1) exist. In the article's Appendix the possibility of obtaining nighttime wind information about the mesopause region by means of microwave radiometry is investigated.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-03-10
    Description: Observation and simulation of individual ozone streamers are important for the description and understanding of non-linear transport processes in the middle atmosphere. A sudden increase in mid-stratospheric ozone occurred above central Europe on 4 December 2015. The GROund-based Millimeter-wave Ozone Spectrometer (GROMOS) and the Stratospheric Ozone MOnitoring RAdiometer (SOMORA) in Switzerland measured an ozone enhancement of about 30 % at 34 km altitude (8.3 hPa) from 1 to 4 December. A similar ozone increase is simulated by the Specified Dynamics Whole Atmosphere Community Climate (SD-WACCM) model. Further, the global ozone fields at 34 km altitude (8.3 hPa) from SD-WACCM and the satellite experiment Aura/MLS show a remarkable agreement for the location and timing of an ozone streamer (large-scale tongue-like structure) extending from the subtropics in northern America over the Atlantic to central Europe. This agreement indicates that SD-WACCM can inform us about the wind inside the Atlantic ozone streamer. SD-WACCM shows an eastward wind of about 100 m s−1 inside the Atlantic streamer in the mid-stratosphere. SD-WACCM shows that the Atlantic streamer flows along the edge of the polar vortex. The Atlantic streamer turns southward at an erosion region of the polar vortex located above the Caspian Sea. The spatial distribution of stratospheric water vapour indicates a filament outgoing from this erosion region. The Atlantic streamer, the polar vortex erosion region and the water vapour filament belong to the process of planetary wave breaking in the so-called surf zone of the northern midlatitude winter stratosphere.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-08
    Description: We used 3 years of water vapour and ozone measurements to study the dynamics in the Arctic middle atmosphere. We investigated the descent of water vapour within the polar vortex, major and minor sudden stratospheric warmings and periodicities at Ny-Ålesund. The measurements were performed with the two ground-based microwave radiometers MIAWARA-C and GROMOS-C, which have been co-located at the AWIPEV research base at Ny-Ålesund, Svalbard (79∘ N, 12∘ E), since September 2015. Both instruments belong to the Network for the Detection of Atmospheric Composition Change (NDACC). The almost continuous datasets of water vapour and ozone are characterized by a high time resolution of the order of hours. A thorough intercomparison of these datasets with models and measurements from satellite, ground-based and in situ instruments was performed. In the upper stratosphere and lower mesosphere the MIAWARA-C water vapour profiles agree within 5 % with SD-WACCM simulations and ACE-FTS measurements on average, whereas AuraMLS measurements show an average offset of 10 %–15 % depending on altitude but constant in time. Stratospheric GROMOS-C ozone profiles are on average within 6 % of the SD-WACCM model, the AuraMLS and ACE-FTS satellite instruments and the OZORAM ground-based microwave radiometer which is also located at Ny-Ålesund. During these first 3 years of the measurement campaign typical phenomena of the Arctic middle atmosphere took place, and we analysed their signatures in the water vapour and ozone measurements. Two major sudden stratospheric warmings (SSWs) took place in March 2016 and February 2018 and three minor warmings were observed in early 2017. Ozone-rich air was brought to the pole and during the major warmings ozone enhancements of up to 4 ppm were observed. The reversals of the zonal wind accompanying a major SSW were captured in the GROMOS-C wind profiles which are retrieved from the ozone spectra. After the SSW in February 2018 the polar vortex re-established and the water vapour descent rate in the mesosphere was 355 m d−1. Inside of the polar vortex in autumn we found the descent rate of mesospheric water vapour from MIAWARA-C to be 435 m d−1 on average. We find that the water vapour descent rate from SD-WACCM and the vertical velocity w‾* of the residual mean meridional circulation from SD-WACCM are substantially higher than the descent rates of MIAWARA-C. w‾* and the zonal mean water vapour descent rate from SD-WACCM agree within 10 % after the SSW, whereas in autumn w‾* is up to 40 % higher. We further present an overview of the periodicities in the water vapour and ozone measurements and analysed seasonal and interannual differences.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-08-06
    Description: Observations of the global distribution of mesospheric gravity wave activity are rare. To our knowledge there exist only a few articles showing global maps of gravity wave potential energy in the mesosphere derived from observations of the instrument SABER (Sounding of the Atmosphere using Broadband Emission Radiometry) on NASA's satellite TIMED (Thermosphere Ionosphere Mesosphere Energetics Dynamics). In the present study, we find that the geopotential height (GPH) measurements of the instrument MLS (Microwave Limb Sounder) on NASA's satellite Aura are sensitive to mesospheric gravity waves with horizontal wavelengths between 200 and 1500 km. We apply a data analysis which evaluates the standard deviation of horizontal GPH perturbations at a fixed pressure level and along the orbit of the sounding volume of Aura/MLS. The orographic waves from the Southern Andes in August serve as a test signal for the horizontal resolution and sensitivity of the method. We find enhanced gravity wave activity in the lower, middle, and upper mesosphere in a small region over the Southern Andes. It seems that the horizontal resolution of the mesospheric gravity wave maps provided by Aura/MLS is higher than those of TIMED/SABER. We apply the method to estimate the global distributions of mesospheric gravity wave activity before and after the major sudden stratospheric warmings (SSWs) of January 21, 2006, January 24, 2009, and January 6, 2013 using 30 day intervals of Aura/MLS observations of GPH. It seems that the gravity wave activity in the lower mesosphere over the subtropical convection regions of the summer hemisphere are decreased after the SSW of January 21, 2006. The gravity wave activity in the lower and middle mesosphere over middle and high latitudes (40° N to 70° N) of the winter hemisphere is decreased after the SSW of January 24, 2009. The major SSW of January 6, 2013 is preceded by enhanced mesospheric gravity wave activity over Eurasia at high latitudes (40° N to 60° N). This asymmetric gravity wave activity in the lower mesosphere is coincident with a long-lasting stay of the stratospheric polar vortex mainly in the Eurasian longitude sector before the SSW of January 6, 2013. In case of the SSW 2009 and SSW 2013, the gravity wave activity is enhanced at latitudes poleward of 70° N in the lower and middle mesosphere after the SSWs.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-01-14
    Description: We use 3 years of water vapour and ozone measurements to analyse dynamical events in the polar middle atmosphere such as sudden stratospheric warmings (SSW), polar vortex shifts, water vapour descent rates and periodicities. The measurements were performed with the two ground-based microwave radiometers MIAWARA-C and GROMOS-C which are co-located at the AWIPEV research base at Ny-Ålesund, Svalbard (79° N, 12° E) since September 2015. The almost continuous datasets of water vapour and ozone are characterised by a high time resolution in the order of hours. A thorough intercomparison of these datasets with models and measurements from satellite, ground-based and in-situ instruments was performed. In the upper stratosphere and lower mesosphere the MIAWARA-C profiles agree within 5 % with SD-WACCM simulations and ACE-FTS measurements whereas AuraMLS measurements show an average offset of 10–15 % depending on altitude but constant in time. Stratospheric GROMOS-C profiles are within 5 % of the satellite instruments AuraMLS and ACE-FTS and the ground-based microwave radiometer OZORAM which is also located at Ny-Ålesund. During these first three years of the measurement campaign typical phenomena of the Arctic middle atmosphere took place and we analysed their signatures in the water vapour and ozone datasets. Inside of the polar vortex in autumn we found the descent rate of mesospheric water vapour to be 435 m/day on average. In early 2017 distinct increases in mesospheric water vapour of about 2 ppm were observed when the polar vortex was displaced and midlatitude air was brought to Ny-Ålesund. Two major sudden stratospheric warmings took place in March 2016 and February 2018 where ozone enhancements of up to 4 ppm were observed. The zonal wind reversals accompanying a major SSW were captured in the GROMOS-C wind profiles which are retrieved from the ozone spectra. After the SSW in February 2018 the polar vortex re-established and the water vapour descent rate in the mesosphere was 355 m/day. In the water vapour and ozone time series signatures of atmospheric waves with periods close to 2, 5, 10 and 16 days were found.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-11-21
    Description: Wind profile information throughout the upper stratosphere and lower mesosphere (USLM) is important for the understanding of atmospheric dynamics but became available only recently, thanks to developments in remote sensing techniques and modelling approaches. However, as wind measurements from these altitudes are still very rare, such products have generally not yet been validated with (other) observations. This paper presents the first long-term intercomparison of wind observations in the USLM by opposing co-located microwave radiometer and lidar instruments at Andenes (69.3° N, 16.0° E). Good correspondence has been found at all altitudes for both horizontal wind components for nighttime as well as daylight conditions. Biases are mostly within the random errors and do not exceed 5–10 m/s which is less than 10 % of the typically encountered wind speeds. Moreover, comparisons of the observations with the major re-analyses and models covering this altitude range are shown, especially also with the freshly released ERA5, ECMWF's first re-analysis to cover the whole USLM region. The agreement between models and observations is very good in general, but temporally limited occurrences of pronounced discrepancies (up to 40 m/s) exist. In the article's appendix the possibility of obtaining nighttime wind information about the mesopause region by means of microwave radiometry is investigated.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-11-30
    Description: Observation and simulation of individual ozone streamers are important for the description and understanding of nonlinear transport processes in the middle atmosphere. A sudden increase in mid-stratospheric ozone occurred above Central Europe on December 4, 2015. The GROunbased Millimeter-wave Ozone Spectrometer (GROMOS) and the Stratospheric Ozone MOnitoring RAdiometer (SOMORA) in Switzerland measured an ozone enhancement of about 30 % at 34 km altitude from December 1 to December 4. A similar ozone increase is simulated by the Specified Dynamics-Whole Atmosphere Community Climate (SD-WACCM) model. Further, the global ozone fields at 34 km altitude from SD-WACCM and the satellite experiment Aura/MLS show a remarkable agreement for the location and the timing of an ozone streamer (large-scale tongue like structure) extending from the subtropics in Northern America over the Atlantic to Central Europe. This agreement indicates that SD-WACCM can inform us about the wind inside the Atlantic ozone streamer. SD-WACCM shows an eastward wind of about 100 m/s inside the Atlantic streamer in the mid-stratosphere. SD-WACCM shows that the Atlantic streamer flows along the edge region of the polar vortex. The Atlantic streamer turns southward at an erosion region of the polar vortex located above the Caspian Sea. The spatial distribution of stratospheric water vapour indicates a filament outgoing from this erosion region. The Atlantic streamer, the polar vortex erosion region and the water vapour filament belong to the process of planetary wave breaking in the so-called surf zone of the Northern mid-latitude winter stratosphere.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...