ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Publication Date: 2019
    Description: The current industrial scenario demands advances that depend on expensive and sophisticated solutions. Augmented Reality (AR) can complement, with virtual elements, the real world. Faced with this features, an AR experience can meet the demand for prototype testing and new solutions, predicting problems and failures that may only exist in real situations. This work presents an environment for experimentation of advanced behaviors in smart factories, allowing experimentation with multi-robot systems (MRS), interconnected, cooperative, and interacting with virtual elements. The concept of ARENA introduces a novel approach to realistic and immersive experimentation in industrial environments, aiming to evaluate new technologies aligned with the Industry 4.0. The proposed method consists of a small-scale warehouse, inspired in a real scenario characterized in this paper, managing by a group of autonomous forklifts, fully interconnected, which are embodied by a swarm of tiny robots developed and prepared to operate in the small scale scenario. The AR is employed to enhance the capabilities of swarm robots, allowing box handling and virtual forklifts. Virtual laser range finders (LRF) are specially designed as segmentation of a global RGB-D camera, to improve robot perception, allowing obstacle avoidance and environment mapping. This infrastructure enables the evaluation of new strategies to improve manufacturing productivity, without compromising the production by automation faults.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019
    Description: This paper presents an omnidirectional RGB-D (RGB + Distance fusion) sensor prototype using an actuated LIDAR (Light Detection and Ranging) and an RGB camera. Besides the sensor, a novel mapping strategy is developed considering sensor scanning characteristics. The sensor can gather RGB and 3D data from any direction by toppling in 90 degrees a laser scan sensor and rotating it about its central axis. The mapping strategy is based on two environment maps, a local map for instantaneous perception, and a global map for perception memory. The 2D local map represents the surface in front of the robot and may contain RGB data, allowing environment reconstruction and human detection, similar to a sliding window that moves with a robot and stores surface data.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-10-21
    Description: This work discusses a novel human–robot interface for a climbing robot for inspecting weld beads in storage tanks in the petrochemical industry. The approach aims to adapt robot autonomy in terms of the operator’s experience, where a remote industrial joystick works in conjunction with an electromyographic armband as inputs. This armband is worn on the forearm and can detect gestures from the operator and rotation angles from the arm. Information from the industrial joystick and the armband are used to control the robot via a Fuzzy controller. The controller works with sliding autonomy (using as inputs data from the angular velocity of the industrial controller, electromyography reading, weld bead position in the storage tank, and rotation angles executed by the operator’s arm) to generate a system capable of recognition of the operator’s skill and correction of mistakes from the operator in operating time. The output from the Fuzzy controller is the level of autonomy to be used by the robot. The levels implemented are Manual (operator controls the angular and linear velocities of the robot); Shared (speeds are shared between the operator and the autonomous system); Supervisory (robot controls the angular velocity to stay in the weld bead, and the operator controls the linear velocity); Autonomous (the operator defines endpoint and the robot controls both linear and angular velocities). These autonomy levels, along with the proposed sliding autonomy, are then analyzed through robot experiments in a simulated environment, showing each of these modes’ purposes. The proposed approach is evaluated in virtual industrial scenarios through real distinct operators.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-10-04
    Description: The current industrial scenario demands advances that depend on expensive and sophisticated solutions. Augmented Reality (AR) can complement, with virtual elements, the real world. Faced with this features, an AR experience can meet the demand for prototype testing and new solutions, predicting problems and failures that may only exist in real situations. This work presents an environment for experimentation of advanced behaviors in smart factories, allowing experimentation with multi-robot systems (MRS), interconnected, cooperative, and interacting with virtual elements. The concept of ARENA introduces a novel approach to realistic and immersive experimentation in industrial environments, aiming to evaluate new technologies aligned with the Industry 4.0. The proposed method consists of a small-scale warehouse, inspired in a real scenario characterized in this paper, managing by a group of autonomous forklifts, fully interconnected, which are embodied by a swarm of tiny robots developed and prepared to operate in the small scale scenario. The AR is employed to enhance the capabilities of swarm robots, allowing box handling and virtual forklifts. Virtual laser range finders (LRF) are specially designed as segmentation of a global RGB-D camera, to improve robot perception, allowing obstacle avoidance and environment mapping. This infrastructure enables the evaluation of new strategies to improve manufacturing productivity, without compromising the production by automation faults.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-11-22
    Description: This paper presents an omnidirectional RGB-D (RGB + Distance fusion) sensor prototype using an actuated LIDAR (Light Detection and Ranging) and an RGB camera. Besides the sensor, a novel mapping strategy is developed considering sensor scanning characteristics. The sensor can gather RGB and 3D data from any direction by toppling in 90 degrees a laser scan sensor and rotating it about its central axis. The mapping strategy is based on two environment maps, a local map for instantaneous perception, and a global map for perception memory. The 2D local map represents the surface in front of the robot and may contain RGB data, allowing environment reconstruction and human detection, similar to a sliding window that moves with a robot and stores surface data.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...