ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Entomology 50 (2005), S. 529-551 
    ISSN: 0066-4170
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Đ?“ Abstract?? Evolutionary ecology seeks to understand the selective reasons for the design features of the immune defense, especially with respect to parasitism. The molecular processes thereby set limitations, such as the failure to recognize an antigen, response specificity, the cost of defense, and the risk of autoimmunity. Sex, resource availability, and interference by parasites also affect a response. In turn, the defense repertoire consists of different kinds of immune responsesĐ??constitutive or induced, general or specificĐ??and involves memory and lasting protection. Because the situation often defies intuition, mathematical analysis is typically required to identify the costs and benefits of variation in design, but such studies are few. In all, insect immune defense is much more similar to that of vertebrates than previously thought. In addition, the field is now rapidly becoming revolutionized by molecular data and methods that allow unprecedented access to study evolution in action.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 414 (2001), S. 506-506 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Immune-challenged vertebrate females transfer specific antibodies to their offspring, but this gratuitous immunity cannot operate in invertebrates. Here we show that constitutive immune defence is enhanced in sexual offspring of the bumble-bee Bombus terrestris L. when the parental colony is ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [s.l.] : Macmillan Magazines Ltd.
    Nature 397 (1999), S. 151-154 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] In many species of animals, females typically mate with more than one male (polyandry). Some social insects carry this behaviour to extremes. For example, honeybee queens mate with ten to twenty (or even more) males on their nuptial flights. The reasons for this behaviour remain unknown, given ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 363 (1993), S. 65-67 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Bumblebee workers parasitized by conopid larvae (the flies oviposit an egg into the bee's abdomen) often stay away from their colonies at least during daylight foraging hours13. This seems a paradoxical behaviour, for workers of social insects only gain reproductive success by helping their ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-1939
    Keywords: Key words Phoresy ; Host preference ; Acari ; Bombus ; Dispersal
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Host caste recognition may be important for the dispersal of phoretic mites associated with social insects. All developmental stages of the mite Parasitellus fucorum (Acari: Mesostigmata: Parasitidae) live in the nests of bumblebees (Hymenoptera: Apidae: Bombus). Dispersal occurs by specialised phoretic instars, deutonymphs, which attach to adult bumblebees. Since bumblebee colonies are annual and only young queens overwinter, deutonymphs that are able to discriminate between bumblebee castes and preferentially attach to queens should be favoured by selection. In the field, deutonymphs of P. fucorum were found to be phoretic on bumblebee workers and queens, and in behavioural experiments all castes proved to be attractive as carriers for the mites. However, they preferred queens that had hibernated as carriers when they could choose between workers and queens. In a further experiment, when given a choice, deutonymphs switched from males to young queens but never transferred from a queen to a male. These results suggest that deutonymphs preferentially attach to queens but may also use other castes for transport. Those dispersing on workers and males may try to switch to queens later. Host-switching is possible during copulation and on flowers, where bees of all castes forage.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 107 (1996), S. 71-78 
    ISSN: 1432-1939
    Keywords: Host utilisation ; Host size ; Fitness ; Parasitoids ; Diptera: Conopidae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Two parasitoid flies,Physocephala rufipes andSicus ferrugineus (Diptera, Conopidae), and their hosts,Bombus spp., coexist at various locations in northwestern Switzerland. A detailed field study showed that both conopid species use the hostB. pascuorum to a similar degree, while the hostB. terr-luc (a pooled category ofB. terrestris andB. lucorum) is more frequently parasitised than expected byS. ferrugineus. The hostB. lapidarius in turn is exclusively used byP. rufipes. Furthermore, hosts ofB. terr-luc andB. pascuorum parasitised byS. ferrugineus were larger than hosts parasitised byP. rufipes, or than those not parasitised. The findings suggest thatS. ferrugineus selects larger hosts and may displaceP. rufipes. Pupal weight, a predictor of adult body size and parasitoid fecundity, is positively correlated with host size and larger pupae are more likely to emerge, while host species had no effect on the probability of emergence in either conopid species. Host species affected pupal weight inS. ferrugineus, but not inP. rufipes, althoughP. rufipes grew larger in hosts of a given size. Daughters emerged from larger pupae than males, but this did not correlate with larger host sizes. These observations add to the scarce knowledge of dipteran parasitoids.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-1939
    Keywords: Bambus ; Conopidae ; Parasitism ; Pollen collection ; Development
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Conopid flies (Conopidae, Diptera) are common larval parasites of bumblebees. The larva develops inside the abdomen of workers, queens and males. Development is completed within 10–12 days after oviposition when the host is killed and the parasite pupates in situ. Development results in parasitised bees becoming unable to carry large loads of nectar, as the conopid larvae reside where the honey crop is normally located. Furthermore, an addition to the bee's unloaden body mass is likely (average larval weight reached at pupation by the common parasite species Sicus ferrugineus: ±SD 36.3±12.3 mg, n=59; by Physocephala rufipes: 55.8±16.9 mg, n=108). We here asked whether the propensity of workers of the bumblebee Bombus pascuorum to collect nectar rather than pollen is related to the presence of conopid larvae. For samples of bees (n=2254 workers) collected over 3 years of field studies in northwestern Switzerland, there was no difference in the frequency of bees caught as pollen collectors among parasitised (38.1% of cases, n=210) as compared to non-parastised bees (43.9%, n=360) (χ 2=1.83, n.s.). However, compared to the non-parasitised bees (n=360), those hosts containing a third (last) instar larva (n=9) were less likely to collect pollen than expected by chance χ 2=6.91, P=0.003. Similarly, hosts with short survival time between capture and being killed by the developing larva (which hence must have harboured a late instar parasite at time of capture) were less likely to collect pollen (8%, n=25) than those found not parasitised (37.6%, n=891 χ 2=9.16, P〈0.001). Late instar larvae grow so big that they fill the entire abdomen. Although there was also a tendency for presumably older bees to collect less pollen, this is unlikely to explain the observations. We also discuss whether these changes in foraging behaviour of bumblebees may reflect a host-parasite conflict over the type of resource to be collected.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Behavioral ecology and sociobiology 14 (1984), S. 263-271 
    ISSN: 1432-0762
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Observations and field experiments on the foraging behaviour of individual workers of Cataglyphis bicolor in a Southern Tunisian shrub desert are reported. The workers search singly for their food (mostly animal carcasses) and are singleprey loaders. The individuals differ to a great extent in their persistence to re-search the place of a find on a previous foraging excursion. The differences range continuously from thoroughly researching a place to just walking by. If, in an experiment, the same reward is offered farther from the nest, each ant persists more in re-searching the place than if food is offered close to the nest. In a further experiment, some individuals persisted less in searching near the former finding site if they had collected a fly than after collecting a piece of cheese. There is, however, evidence that individuals do not differ in their food preference. Persistent individuals, which re-search the place of a former find, are faster than non-persistent ones in retrieving food that is experimentally arranged in an aggregated manner. The experiment failed to demonstrate the (reverse) superiority of non-persistent individuals foraging on homogeneously distributed food. The observations of unmanipulated foraging excursions in the field suggest such an advantage for non-persistent foragers under natural conditions where food in general occurs widely dispersed. The colony as a whole retrieves more food within the same time from an experimental lay-out that is homogeneous than from an aggregated one. The behavioural differences between individuals could be caused by a training bias of the short-lived foragers, leading to a different assessment of the profitability of a searching method which implies returning to a formerly rewarding place. Thus, each worker uses the most promising behaviour according to its individual experience. Alternatively, the individually different searching methods could mainly contribute to the welfare of the colony as a whole rather than leading to a maximal short-term efficiency of each individual. In particular, the colony, disposing of only a few highly persistent foragers, could quickly exploit occasional short-lived, but unpredictible, clumps of food within its foraging range.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Behavioral ecology and sociobiology 33 (1993), S. 319-327 
    ISSN: 1432-0762
    Keywords: Social insects ; Division of labour ; Parasites ; Transmission ; Bombus terrestris
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Parasites of social insect workers can be transmitted within the colony to other, related host individuals or, alternatively, to unrelated workers of other colonies. Division of labour affects the probability of transmission, as young individuals often work inside the nest whereas older ones often leave the nest to forage. Therefore, the relative probabilities of transmission within-vs. between-nests is also affected by the delay between host infection and the shedding of propagules, i.e. the latent period of the parasite strain. We therefore hypothesized that strains of the flagellate parasite Crithidia bombi (Trypanosomatidae, Zoomastigophorea) infecting workers of the bumble bee Bombus terrestris (Hymenoptera, Apidae) could differ in their delays and coexist in a population. This would be the case if strains that are shed after a short time delay were more efficiently transmitted to other colony members, whereas strains with long delays were more efficiently transmitted to non-related workers in the population. We tested this hypothesis by experimentally varying time delay and by allowing transmission to either sister workers from the same nest or unrelated workers from other nests. Transmission of C. bombi was measured as the number of parasitic cells shed by the exposed workers after a standard period. The results showed that relatedness as such had no effect, but that delay and nest identity were highly significant effects to explain variation in transmission success. There was a significant interaction between nest identity and delay, such that bees of some colonies acted as efficient transmitters for C. bombi under short delays and vice versa. We discuss how division of labour may affect parasitism in social insects and, vice versa, how division of labour may be under selection from the effects of parasitism, using available evidence from the literature.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Behavioral ecology and sociobiology 28 (1991), S. 371-376 
    ISSN: 1432-0762
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Contrary to the expectations of kin selection theory, intracolony relatedness in eusocial insects is often low. We examined the idea that associations of low relatedness (high genetic variability) may be advantageous because of negative frequency-dependent selection on common host phenotypes by rapidly evolving parasites and pathogens. Using the natural host-parasite system of the bumble bee Bombus terrestris and its intestinal trypanosome Crithidia bombi, we investigated the transmission properties of parasites in host groups. Within naturally infested nests and in artificially constructed groups of workers, prevalence of infestation increased with time of exposure (Table 1). The susceptibility of isolated groups of workers to the parasites to which they were exposed differed with identity and natural infestation of their nest of origin (Table 2). In addition, those workers that were related to the individual introducing an infection to their group were more likely to become infested than were unrelated workers (Table 3). Although the bumble bee workers in experimental boxes appeared to differ in behavior toward kin and non-kin, making more physical contacts with kin, we found no discernible relationship between number of physical contacts and prevalence of infestation in a group. Therefore, we conclude that differences in parasite transmission reflected interactions among different host and parasite phenotypes. This system thus demonstrates the factors necessary for negative frequency-dependent selection by parasites on common host phenotypes - variability for susceptibility and infectiousness in host and parasite populations and similarity for these traits among related individuals. If, as we show here, high genetic relatedness within groups enhances parasite transmission, kin directed altruism may increase the risk of contracting parasites and infectious diseases. Therefore, parasites and pathogens may be an important force moderating the genetic structure of social groups.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...