ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Publication Date: 2018-08-23
    Description: Within the scope of the presented work the processing of AISI H11 (1.2343 or X37CrMoV5-1) tool steel powder modified by adding carbon black nanoparticles in varying concentrations by means of Laser Metal Deposition (LMD) is extensively investigated. On the basis of single weld track experiments, multi-layered cuboid-shaped samples made out of pure AISI H11 tool steel powder as well as modified tool steel powder mixtures were manufactured by applying various process parameters. The main scientific aim of the investigations was to achieve a basic understanding of the influence of the added carbon black nanoparticles on the resulting sample properties. For that purpose, the generated specimens were first analyzed with respect to relative density, inner defects, microstructure, Vickers hardness and chemical composition. Subsequently, the mechanical properties of post-heat-treated specimens were investigated, with the focus on the yield strength (Y0.2%), by means of compression tests. We prove that by adding carbon black nanoparticles to the initial AISI H11 powder, the formation of martensitic and bainitic phases, as well as the precipitation of carbides at the grain boundaries, are enhanced. As a result, a significant increase of Vickers hardness and of the compression yield strength by up to 11% can be achieved in comparison to samples made out of the unmodified AISI H11 powder. Furthermore, it can be fundamentally demonstrated that the fabrication of parts with layer-specific variable hardness can be realized by the controlled changing of the powder mixtures used during the layer-by-layer manufacturing approach.
    Electronic ISSN: 2075-4701
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-12-14
    Description: The aim of this work is to investigate the β-Ti-phase-stabilizing effect of vanadium and iron added to Ti-6Al-4V powder by means of heterogeneous powder mixtures and in situ alloy-formation during laser powder bed fusion (L-PBF). The resulting microstructure was analyzed by metallographic methods, scanning electron microscopy (SEM), and electron backscatter diffraction (EBSD). The mechanical properties were characterized by compression tests, both prior to and after heat-treating. Energy dispersive X-ray spectroscopy showed a homogeneous element distribution, proving the feasibility of in situ alloying by LPBF. Due to the β-phase-stabilizing effect of V and Fe added to Ti-6Al-4V, instead of an α’-martensitic microstructure, an α/β-microstructure containing at least 63.8% β-phase develops. Depending on the post L-PBF heat-treatment, either an increased upsetting at failure (33.9%) compared to unmodified Ti-6Al-4V (28.8%), or an exceptional high compressive yield strength (1857 ± 35 MPa compared to 1100 MPa) were measured. The hardness of the in situ alloyed material ranges from 336 ± 7 HV0.5, in as-built condition, to 543 ± 13 HV0.5 after precipitation-hardening. Hence, the range of achievable mechanical properties in dependence of the post-L-PBF heat-treatment can be significantly expanded in comparison to unmodified Ti-6Al-4V, thus providing increased flexibility for additive manufacturing of titanium parts.
    Electronic ISSN: 2075-4701
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...