ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Annals of biomedical engineering 18 (1990), S. 407-425 
    ISSN: 1573-9686
    Keywords: Electrical stimulation ; Tissue damage ; Electrode
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine , Technology
    Notes: Abstract The effects of imbalanced biphasic stimulation were studied on cat skeletal muscle to determine if greater charge densities can be safely used than with balanced or monophasic stimulation. The results of the study indicate that imbalanced biphasic stimulation can be tolerated safely by tissue at or below a net dc current density of 35 μA/mm2 and not safely tolerated at or above a net dc current of 50 μA/mm2. Monophasic stimulation has been shown to be safe at or below net dc current levels of 10 μA/mm2 and in these studies we found it was not safe at or above net dc current levels of 20 μA/mm2. Stimuli were applied to muscles via coiled wire intramuscular electrodes using a regulated current source. Since the safe average current density was higher for imbalanced biphasic stimulation than for monophasic stimulation, this suggests that: (a) pH change is not the primary reaction causing tissue damage and (b) the damaging electrochemical process that takes place during a cathodic stimulation pulse can be reversed by an anodic pulse having substantially less charge than its companion cathodic pulse. We conclude that greater cathodic charge densities can be safely employed with imbalanced biphasic stimulation than with either monophasic stimulation or balanced charge biphasic stimulation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    Journal of Biomedical Materials Research 25 (1991), S. 589-608 
    ISSN: 0021-9304
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: Single and multi-strand stainless steel and cobalt-nickel alloy wires, with strand diameters from 26 to 46 μm, were fatigue tested using a modified rotating bending test to determine what factors are most important in controlling fatigue life. The relation between cyclic strain and cyclic life was determined for each material by cyclically straining test specimens at various strain ranges and recording the number of cycles to failure. The results show that (a) the fatigue curves of the 316LVM, MP35N, DBS, and Syntacoben wires are very similar and have many of the same fatigue characteristics of specimens of large cross section. (b) Multi-stranded wires have the same average fatigue life as their individual constituent strands but the variance of that life is smaller (c) Deformities in the wire, which are created during the manufacturing, appear to have the effect of shortening the fatigue life of these small section wires. (d) Observation of wire fracture surfaces show a relatively small crack propagation zone and a large fast fracture zone suggesting that most of the fatigue life of these small wires is in the original crack formation, which creates a large stress concentration and quickly leads to wire failure, (e) The size of the wire cross sectional area is of secondary importance compared to the amplitude of the maximum cyclic strain of the individual strands in determining fatigue life of the cable. To maximize the fatigue life of electrodes in vivo, the highest fatigue life for a given bending radius of curvature is desired. This suggests wire strands should be manufactured at the smallest diameter possible (without introducing structural flaws) to maximize service life.
    Additional Material: 20 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...