ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 97 (1992), S. 6451-6459 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: We present the results of quasiclassical trajectory (QCT) and quantum centrifugal sudden hyperspherical (CSH) scattering calculations for the Cl+HCl→ClH+Cl reaction using a semiempirical potential energy surface. In particular, we report state-to-state integral and differential cross sections in the vicinity of a transition state resonance that occurs at a total energy E of 0.642 eV. This resonance, which is labeled by the transition state quantum numbers (0,0,2), strongly perturbs the cross sections for the initial rovibrational state HCl(v=1, j=5), which was therefore considered in all our calculations. For E≥0.680 eV, which is well removed from the resonance energy, the QCT and CSH results are in good agreement, but for E near the resonance energy, important quantum effects are found in the integral cross sections, product state distributions, and differential cross sections. The CSH integral cross sections show smooth steplike increases for E≈0.642 eV, which are not seen in the QCT results. Associated with these steps are increased branching to the v'=0 product HCl vibrational state, and a strong propensity for the production of rotational states with j'=15 and 16 for v'=0. These features of the product energy partitioning are not present in the QCT results, although the correct rotational distributions are approximately recovered if the final vibrational action is constrained to match its quantum value. The CSH differential cross sections show a sudden shift from backward to sideward scattering between 0.642 and 0.660 eV, while the QCT cross sections remain backward peaked. An analysis of the "number of atom–diatom encounters,'' during the course of a reactive collision, shows that there are chattering trajectories. These are associated with sideward scattering, but their probability is low and as a result they do not produce distinct features in the angular distributions. However, if the classical deflection function is weighted by the quantum reaction probability, angular distributions are obtained that are in reasonable agreement with the CSH angular distributions (including resonance features).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 88 (1988), S. 5481-5488 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Collisional energy transfer from H atoms to CO(v=0, J(approximately-equal-to)2) has been studied at a collision energy of 1.58±0.07 eV by photolyzing H2S at 222 nm in a nozzle expansion with CO and probing the CO(v‘, J‘) levels using tunable VUV laser-induced fluorescence. The ratio CO(v‘=1)/CO(v‘=0) is found to be 0.1±0.008. The rotational distribution of CO(v‘=0) peaks at J‘≤11 and decays gradually; population is still observed at J‘≥45. The rotational distribution of CO(v‘=1) is broad and peaks near J‘=20. The experimental results are compared to quasiclassical trajectory calculations performed both on the H+CO surface of Bowman, Bittman, and Harding (BBH) and on the surface of Murrell and Rodriguez (MR). The experimental rotational distributions, particularly those for CO(v‘=1), show that the BBH surface is a better model than the MR surface. The most significant difference between the two surfaces appears to be that for energetically accessible regions of configuration space the derivative of the potential with respect to the CO distance is appreciable only in the HCO valley for the BBH surface, but is large for all H atom approaches in the MR potential. Because the H–CO geometry is bent in this valley, vibrational excitation on the BBH surface is accompanied by appreciable rotational excitation, as observed experimentally.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 100 (1994), S. 8026-8039 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: We present experimental and theoretical differential cross sections for the fine structure changing process Ar + O(3P2)→Ar + O(3Pjmj) with (j,mj)=(1,1), (1,0), and (0,0). The measured cross sections refer to a collision energy of 3.2 kcal/mol, and were obtained from Doppler line shapes associated with (2+1) resonance-enhanced multiphoton ionization of O(3Pjmj) after scattering in a crossed-beam apparatus. The theoretical results are based on 3Σ− and 3Π potential curves obtained from high quality ab initio calculations, and on quantum coupled-channel calculations. The calculated differential cross sections show strong Stuckelberg oscillations, with similar magnitudes and phases for all three final states. With slight adjustment (0.03 A(ring)) of the hard wall on the 3Σ− curve, the calculated angular distributions match up well with the corresponding experimental results, much better than is found using previously derived empirical potentials. At the same time, the integral total cross sections obtained from the ab initio measurements are in satisfactory agreement with previous measurements.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of physical chemistry 〈Washington, DC〉 93 (1989), S. 2204-2209 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 105 (1996), S. 7495-7503 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Laser induced fluorescence (LIF) detection of highly vibrationally excited O2 resulting from visible photolysis of pure O3 is attributed to the title reaction. The vibrational and rotational energy distributions as well as Doppler profiles of selected product states of the nascent O2 were obtained. Predictions of quasiclassical trajectory calculations on the "Varandas-Pais'' potential energy surface (l) are inconsistent with observation. This points out the need for a more accurate ab initio study of this important reaction. The implications for nonlocal thermodynamic equilibrium chemistry in the stratosphere are discussed. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 88 (1988), S. 3709-3714 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The self-consistent field (SCF) approximation for coupled anharmonic vibrations is applied to the calculation of vibrational energy levels (predissociation resonances) of collinear models of I2 (v)He and I2 (v)Ne, with vibrational quantum number v between 5 and 30. The predissociation lifetimes of these same states are obtained from a distorted wave Born approximation calculation with self-consistent field states taken as the initial states of the complex, and with correlation between the modes taken as the interactions leading to decay. Although the binding energies of the van der Waals complex are very small (order of several cm−1 ), the SCF eigenvalues are in remarkable agreement with the exact numerical values. The lifetimes obtained from the SCF-distorted wave Born approximation (DWBA) are compared with calculations in which the initial state is treated more simply, assuming separability of the modes involved. Results then show that the DWBA with SCF initial states is considerably more accurate than with the more primitive initial state choice. We conclude from these results that the self-consistent field method offers a very accurate description of large-amplitude vibrational motions in van der Waals clusters, with good quantitative results for both the energy levels and predissociation dynamics of these species.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 113 (2000), S. 7712-7712 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 112 (2000), S. 2987-2993 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Methods are developed for modeling the optical properties of aggregates of large numbers of small metal nanospheres in a dielectric medium. Aggregates are modeled as systems of coupled dipoles, with the dipole polarizabilities for the spheres determined using Mie theory. Fast-Fourier-transform (FFT) and conjugate-gradient (CG) techniques are used to solve the electrodynamic equations for both ordered and disordered aggregates. Results are shown to match solutions arrived at by direct methods. The range of validity of the coupled-dipole approximation for modeling DNA-linked colloidal materials is established by comparison with coupled-multipole results. While the methods are applicable only to lattice gas aggregates and aggregates composed of nanospheres on cubic lattices, there are no restrictions as to aggregate shape. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Physical Chemistry 39 (1988), S. 317-340 
    ISSN: 0066-426X
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 88 (1988), S. 7942-7951 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: This paper presents a combined experimental and theoretical study of the hyper-Raman spectrum of pyridine adsorbed onto roughened silver electrodes. The surface enhanced hyper-Raman spectra (SEHRS) were measured using a focused cw mode-locked Nd:YAG laser with a peak power density of approximately 107 W/cm2 . Dominant bands in the pyridine spectra are the same (totally symmetric) bands as have been seen in the corresponding Raman (SERS) spectrum, although the relative intensities are different. To interpret these spectra, we present a semiempirical molecular orbital method for determining excitation energies, polarizability derivatives, and hyperpolarizability derivatives that is based on the π-electron Pariser–Parr–Pople (PPP) method. An empirical molecular force field is used to derive vibrational information, and the accuracy of the spectra is assessed by comparison with normal Raman spectra for liquid pyridine and with SERS spectra. The resulting SEHRS spectra are in good agreement with the measured spectra, particularly with respect to the intensity changes in the dominant lines in going from SERS to SEHRS. In addition, the theoretical/experimental comparisons indicate that SEHRS is more sensitive to adsorbate orientation than is SERS since the nontotally symmetric modes are predicted to be comparable in SEHRS (but not SERS) intensity to the totally symmetric modes for orientations other than perpendicular. Most important, a comparison of theoretical and experimental SEHRS/SERS ratios suggests that the enhancement factor associated with SEHRS is on the order of 1013 which is much larger than the 106 enhancement seen for SERS.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...